98%
921
2 minutes
20
Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by biallelic pathogenic/likely pathogenic variants of the () gene. Early diagnosis via newborn screening (NBS) and pre-symptomatic treatment are essential to optimize health outcomes for affected individuals. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay using dried blood spot (DBS) samples for the detection of homozygous absence of exon 7 of the gene. Newborns who screened positive were seen urgently for clinical evaluation. Confirmatory testing by multiplex ligation-dependent probe amplification (MLPA) revealed and gene copy numbers. Six newborns had abnormal screen results among 47,005 newborns screened during the first year and five were subsequently confirmed to have SMA. Four of the infants received gene replacement therapy under 30 days of age. One infant received an splicing modulator due to high maternally transferred AAV9 neutralizing antibodies (NAb), followed by gene therapy at 3 months of age when the NAb returned negative in the infant. Early data show that all five infants made excellent developmental progress. Based on one year of data, the incidence of SMA in Alberta was estimated to be 1 per 9401 live births.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443376 | PMC |
http://dx.doi.org/10.3390/ijns9030042 | DOI Listing |
Neuromuscul Disord
August 2025
Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
Spinal muscular atrophy (SMA) types 2 and 3 are chronic neuromuscular disorders characterized by progressive motor impairment. Although disease-modifying therapies such as risdiplam and nusinersen have shown clinical efficacy, real-world data in pediatric populations remain limited. This prospective observational study evaluated motor function outcomes in 20 children with SMA (aged 3 to 13 years; 12 with type 2, 8 with type 3) receiving either risdiplam or nusinersen in Northwestern Iran.
View Article and Find Full Text PDFJ Neurochem
September 2025
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
Patients with Duchenne muscular dystrophy (DMD) may experience neurobehavioral and cognitive concerns, including psychiatric symptoms, due to the absence of full-length dystrophin (Dp427), frequently accompanied by deficiencies in shorter isoforms. The lack of dystrophin affects neurophysiological processes from the uterine phase, impacting neural circuitry in brain regions such as the prefrontal cortex, hippocampus, and cerebellum. This leads to reduced inhibitory GABAergic transmission and altered hippocampal glutamatergic signaling.
View Article and Find Full Text PDFNeurotherapeutics
September 2025
Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA. Electronic address:
Spinal and bulbar muscular atrophy (SBMA) is a CAG/polyglutamine (polyQ) repeat expansion disorder in which the mutant androgen receptor (AR) protein triggers progressive degeneration of the neuromuscular system in men. As the misfolded polyQ AR is the proximal mediator of toxicity, therapeutic efforts have focused on targeting the mutant protein, but these prior efforts have met with limited success in SBMA patients. Here, we examine the efficacy of small molecule AR proteolysis-targeting chimera (PROTAC) degraders that rapidly and potently promote AR ubiquitination and degradation by the proteasome.
View Article and Find Full Text PDFBMJ Case Rep
September 2025
Department of Neurology, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA.
Monomelic amyotrophy (MMA) is a lower motor neuron predominant disorder affecting an upper limb, which can mimic amyotrophic lateral sclerosis (ALS). It often presents with unilateral, distal upper limb weakness and atrophy, whose trajectory is one of an initial period of progression followed by a prolonged plateau, as opposed to the typically relentless progression as is seen in ALS. This case report describes a novel observation of a patient with MMA with an unexplained ipsilateral partial Horner's syndrome (miosis and ptosis).
View Article and Find Full Text PDFSci Adv
September 2025
Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA.
Movement is executed through balanced excitation-inhibition in spinal motor circuits. Short-term perturbations in one type of neurotransmission are homeostatically counteracted by the opposing type, but prolonged excitation-inhibition imbalance causes dysfunction at both single neuron and circuit levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known.
View Article and Find Full Text PDF