A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Electrostatically driven unidirectional molecular flux for high performance alkaline flow batteries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To mitigate the mismatch between energy availability and energy demand due to day/night shifts and seasonal variations, intensive efforts have been dedicated to storing renewable energy in various energy storage modules. Redox flow batteries have an upper hand over conventional batteries as energy storage modules due to their capability of decoupling energy and power. However, interfacial events, such as mass transport and electron transfer, play pivotal roles in flow batteries' energy storage and conversion mechanisms. We show that by activating electrostatic forces at the interface, unidirectional molecular flux can be achieved to and from the driving electrode surface, thereby generating a parallel or antiparallel electrostatic current along with a diffusion current. This approach of triggering electrostatic forces in flow batteries enhances their volumetric energy density and amplifies the energy efficiency to values as high as ∼92% without altering the solubility limit of the redox active species.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr02727aDOI Listing

Publication Analysis

Top Keywords

flow batteries
12
energy storage
12
energy
9
unidirectional molecular
8
molecular flux
8
storage modules
8
electrostatic forces
8
electrostatically driven
4
driven unidirectional
4
flux high
4

Similar Publications