Comparative Performance of Contrast-enhanced Mammography, Abbreviated Breast MRI, and Standard Breast MRI for Breast Cancer Screening.

Radiology

From the Department of Radiology, University of Washington, Seattle, Wash (M.B.L., S.C.P., H.R., D.L.L., C.I.L., K.P.L., I.L., D.B., M.L.B., J.M.L.); Department of Radiology (M.B.L., S.C.P., H.R., D.L.L., C.I.L., K.P.L., I.L., D.B., M.L.B., J.M.L.) and Clinical Research Division (D.S.H.), Fred Hutch

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background Contrast-enhanced mammography (CEM) and abbreviated breast MRI (ABMRI) are emerging alternatives to standard MRI for supplemental breast cancer screening. Purpose To compare the diagnostic performance of CEM, ABMRI, and standard MRI. Materials and Methods This single-institution, prospective, blinded reader study included female participants referred for breast MRI from January 2018 to June 2021. CEM was performed within 14 days of standard MRI; ABMRI was produced from standard MRI images. Two readers independently interpreted each CEM and ABMRI after a washout period. Examination-level performance metrics calculated were recall rate, cancer detection, and false-positive biopsy recommendation rates per 1000 examinations and sensitivity, specificity, and positive predictive value of biopsy recommendation. Bootstrap and permutation tests were used to calculate 95% CIs and compare modalities. Results Evaluated were 492 paired CEM and ABMRI interpretations from 246 participants (median age, 51 years; IQR, 43-61 years). On 49 MRI scans with lesions recommended for biopsy, nine lesions showed malignant pathology. No differences in ABMRI and standard MRI performance were identified. Compared with standard MRI, CEM demonstrated significantly lower recall rate (14.0% vs 22.8%; difference, -8.7%; 95% CI: -14.0, -3.5), lower false-positive biopsy recommendation rate per 1000 examinations (65.0 vs 162.6; difference, -97.6; 95% CI: -146.3, -50.8), and higher specificity (87.8% vs 80.2%; difference, 7.6%; 95% CI: 2.3, 13.1). Compared with standard MRI, CEM had significantly lower cancer detection rate (22.4 vs 36.6; difference, -14.2; 95% CI: -28.5, -2.0) and sensitivity (61.1% vs 100%; difference, -38.9%; 95% CI: -66.7, -12.5). The performance differences between CEM and ABMRI were similar to those observed between CEM and standard MRI. Conclusion ABMRI had comparable performance to standard MRI and may support more efficient MRI screening. CEM had lower recall and higher specificity compared with standard MRI or ABMRI, offset by lower cancer detection rate and sensitivity compared with standard MRI. These trade-offs warrant further consideration of patient population characteristics before widespread screening with CEM. Clinical trial registration no. NCT03517813 © RSNA, 2023 See also the editorial by Chang in this issue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481328PMC
http://dx.doi.org/10.1148/radiol.230576DOI Listing

Publication Analysis

Top Keywords

standard mri
44
mri
17
breast mri
16
cem abmri
16
compared standard
16
standard
12
mri abmri
12
cancer detection
12
biopsy recommendation
12
cem
11

Similar Publications

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF

Thirty years of SPM-BrainMap synergy: making and mining coordinate-based literature.

Cereb Cortex

August 2025

Research Imaging Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, United States.

Statistical Parametric Mapping (SPM) adheres to rigorous methodological standards, including: spatial normalization, inter-subject averaging, voxel-wise contrasts, and coordinate reporting. This rigor ensures that a thematically diverse literature is amenable to meta-analysis. BrainMap is a community database (www.

View Article and Find Full Text PDF

Background: Bone marrow (BM) lesion differentiation remains challenging, and quantitative magnetic resonance imaging (MRI) may enhance accuracy over conventional methods. We evaluated the diagnostic value and inter-reader reliability of Dixon-based signal drop (%drop) and fat fraction percentage (%fat) as adjuncts to existing protocols.

Materials And Methods: In this prospective two-center study, 172 patients with BM signal abnormalities underwent standardized 1.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) has become an essential tool in the evaluation of pediatric liver disease. However, the unique physiological, anatomical, and behavioral characteristics of pediatric patients present distinct challenges that necessitate tailored imaging strategies. These guidelines, developed by members of the Society for Pediatric Radiology (SPR) Magnetic Resonance and Abdominal Imaging Committees, provide comprehensive recommendations for performing high-quality liver MRI in children.

View Article and Find Full Text PDF

Glenohumeral instability is a common injury affecting contact and collision athletes. Male sex, younger age at time of first dislocation, and contact sports participation are risk factors for recurrent instability. MRI is the gold standard to evaluate soft tissue structures, while CT is beneficial in quantifying glenoid bone loss and identifying on-track and off-track Hill-Sachs lesions.

View Article and Find Full Text PDF