A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Geometric evaluations of CT and MRI based deep learning segmentation for brain OARs in radiotherapy. | LitMetric

Geometric evaluations of CT and MRI based deep learning segmentation for brain OARs in radiotherapy.

Phys Med Biol

St James's University Hospital, Department of Medical Physics and Engineering, Leeds Cancer Centre, Leeds, United Kingdom.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep-learning auto-contouring (DL-AC) promises standardisation of organ-at-risk (OAR) contouring, enhancing quality and improving efficiency in radiotherapy. No commercial models exist for OAR contouring based on brain magnetic resonance imaging (MRI). We trained and evaluated computed tomography (CT) and MRI OAR autosegmentation models in RayStation. To ascertain clinical usability, we investigated the geometric impact of contour editing before training on model quality.Retrospective glioma cases were randomly selected for training (= 32, 47) and validation (= 9, 10) for MRI and CT, respectively. Clinical contours were edited using international consensus (gold standard) based on MRI and CT. MRI models were trained (i) using the original clinical contours based on planning CT and rigidly registered T1-weighted gadolinium-enhanced MRI (MRIu), (ii) as (i), further edited based on CT anatomy, to meet international consensus guidelines (MRIeCT), and (iii) as (i), further edited based on MRI anatomy (MRIeMRI). CT models were trained using: (iv) original clinical contours (CTu) and (v) clinical contours edited based on CT anatomy (CTeCT). Auto-contours were geometrically compared to gold standard validation contours (CTeCT or MRIeMRI) using Dice Similarity Coefficient, sensitivity, and mean distance to agreement. Models' performances were compared using paired Student's t-testing.The edited autosegmentation models successfully generated more segmentations than the unedited models. Paired t-testing showed editing pituitary, orbits, optic nerves, lenses, and optic chiasm on MRI before training significantly improved at least one geometry metric. MRI-based DL-AC performed worse than CT-based in delineating the lacrimal gland, whereas the CT-based performed worse in delineating the optic chiasm. No significant differences were found between the CTeCT and CTu except for optic chiasm.T1w-MRI DL-AC could segment all brain OARs except the lacrimal glands, which cannot be easily visualized on T1w-MRI. Editing contours on MRI before model training improved geometric performance. MRI DL-AC in RT may improve consistency, quality and efficiency but requires careful editing of training contours.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/acf023DOI Listing

Publication Analysis

Top Keywords

clinical contours
16
edited based
12
mri
11
brain oars
8
oar contouring
8
autosegmentation models
8
editing training
8
contours edited
8
international consensus
8
gold standard
8

Similar Publications