Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499978PMC
http://dx.doi.org/10.1007/s00401-023-02622-9DOI Listing

Publication Analysis

Top Keywords

tau pathology
12
white matter
12
homozygous mice
12
tau
9
neuronal tau
8
pathology
8
traumatic brain
8
brain injury
8
transgenic mice
8
axonal injury
8

Similar Publications

Alzheimer's disease (AD) is marked by amyloid-beta (Aβ) plaque buildup, tau hyperphosphorylation, neuroinflammation, neuronal loss, and impaired adult hippocampal neurogenesis (AHN). Taurine has shown protective effects in various cellular and animal models of AD, though the molecular mechanisms of free taurine and its effects in patient-derived models remain underexplored. This study evaluates taurine's therapeutic potential using integrated in silico, in vitro, in vivo, and ex vivo approaches.

View Article and Find Full Text PDF

Enriched Environment Alleviate AD Pathological Progression by Reducing Microglia Complement Signaling in Aged Male APP/PS1 Mice.

FASEB J

September 2025

Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.

Alzheimer's disease (AD) is influenced by genetic and environmental factors. Previous studies showed that enriched environments improved memory and reduced amyloid plaques in AD mice, but the underlying mechanisms remain unclear. This study investigated the effects and mechanisms of enriched environments on AD pathology and cognitive function in aged APP/PS1 mice.

View Article and Find Full Text PDF

The distribution of tau pathology in Alzheimer's disease (AD) shows remarkable inter-individual heterogeneity, including hemispheric asymmetry. However, the factors driving this asymmetry remain poorly understood. Here we explore whether tau asymmetry is linked to i) reduced inter-hemispheric brain connectivity (potentially restricting tau spread), or ii) asymmetry in amyloid-beta (Aβ) distribution (indicating greater hemisphere-specific vulnerability to AD pathology).

View Article and Find Full Text PDF

Introduction: Glial fibrillary acidic protein (GFAP) may contribute to Alzheimer's pathology at early disease stages. GFAP moderation of Alzheimer's disease (AD)-related neurodegeneration and cognition is unclear.

Methods: We examined plasma GFAP moderation of AD biomarkers (amyloid beta [Aβ]-positron emission tomography [PET][A]; plasma phosphorylated tau-181 [p-tau181][T]), neurodegeneration (plasma NfL[N]; structural magnetic resonance imaging [MRI][N]), and cognition (Cog; Cog) in two cohorts: University of California San Francisco (UCSF) (N = 212, 91.

View Article and Find Full Text PDF

Importance: Subjective cognitive decline (SCD) may be an early indicator of Alzheimer disease and related dementias (ADRD), yet its association with plasma biomarkers remains unclear among middle-aged and older adults (aged 50-86 years).

Objective: To examine associations between plasma biomarkers of amyloid, tau, neuroaxonal damage, and glial activation with SCD in a heterogeneous cohort of Hispanic and/or Latino adults.

Design, Setting, And Participants: This cross-sectional study used survey-weighted data from the Study of Latinos-Investigation of Neurocognitive Aging, an ancillary study of the Hispanic Community Health Study/Study of Latinos.

View Article and Find Full Text PDF