98%
921
2 minutes
20
Blockchain technology is a decentralized ledger that allows the development of applications without the need for a trusted third party. As service-oriented computing continues to evolve, the concept of Blockchain as a Service (BaaS) has emerged, providing a simplified approach to building blockchain-based applications. The growing demand for blockchain services has resulted in numerous options with overlapping functionalities, making it difficult to select the most reliable ones for users. Choosing the best-trusted blockchain peers is a challenging task due to the sparsity of data caused by the multitude of available options. To address the aforementioned issues, we propose a novel collaborative filtering-based matrix completion model called Graph Attention Collaborative Filtering (GATCF), which leverages both graph attention and collaborative filtering techniques to recover the missing values in the data matrix effectively. By incorporating graph attention into the matrix completion process, GATCF can effectively capture the underlying dependencies and interactions between users or peers, and thus mitigate the data sparsity scenarios. We conduct extensive experiments on a large-scale dataset to assess our performance. Results show that our proposed method achieves higher recovery accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422225 | PMC |
http://dx.doi.org/10.3390/s23156775 | DOI Listing |
IEEE J Biomed Health Inform
September 2025
Accurate vascular segmentation is essential for coronary visualization and the diagnosis of coronary heart disease. This task involves the extraction of sparse tree-like vascular branches from volumetric space. However, existing methods have faced significant challenges due to discontinuous vascular segmentation and missing endpoints.
View Article and Find Full Text PDFComput Med Imaging Graph
August 2025
Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China. Electronic address:
Bipolar disorder (BD) is a debilitating mental illness characterized by significant mood swings, posing a substantial challenge for accurate diagnosis due to its clinical complexity. This paper presents CS2former, a novel approach leveraging a dual channel-spatial feature extraction module within a Transformer model to diagnose BD from resting-state functional MRI (Rs-fMRI) and T1-weighted MRI (T1w-MRI) data. CS2former employs a Channel-2D Spatial Feature Aggregation Module to decouple channel and spatial information from Rs-fMRI, while a Channel-3D Spatial Attention Module with Synchronized Attention Module (SAM) concurrently computes attention for T1w-MRI feature maps.
View Article and Find Full Text PDFMed Eng Phys
October 2025
College of Basic Medical Science, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.
View Article and Find Full Text PDFPLoS One
September 2025
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, Shandong, China.
Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.
View Article and Find Full Text PDFAm J Audiol
September 2025
Department of Special Education and Communication Disorders, University of Nebraska-Lincoln.
Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.
Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.