Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Medulloblastoma is the most common malignant pediatric brain tumor and is associated with significant morbidity and mortality in the pediatric population. Despite the use of multiple therapeutic approaches consisting of surgical resection, craniospinal irradiation, and multiagent chemotherapy, the prognosis of many patients with medulloblastoma remains dismal. Additionally, the high doses of radiation and the chemotherapeutic agents used are associated with significant short- and long-term complications and adverse effects, most notably neurocognitive delay. Hence, there is an urgent need for the development and clinical integration of targeted treatment regimens with greater efficacy and superior safety profiles. Since the adoption of the molecular-based classification of medulloblastoma into wingless (WNT) activated, sonic hedgehog (SHH) activated, group 3, and group 4, research efforts have been directed towards unraveling the genetic, epigenetic, transcriptomic, and proteomic profiles of each subtype. This review aims to delineate the progress that has been made in characterizing the neurodevelopmental and molecular features of each medulloblastoma subtype. It further delves into the implications that these characteristics have on the development of subgroup-specific targeted therapeutic agents. Furthermore, it highlights potential future avenues for combining multiple agents or strategies in order to obtain augmented effects and evade the development of treatment resistance in tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417410PMC
http://dx.doi.org/10.3390/cancers15153889DOI Listing

Publication Analysis

Top Keywords

neurodevelopmental molecular
8
medulloblastoma
5
molecular landscape
4
landscape medulloblastoma
4
medulloblastoma subgroups
4
subgroups current
4
current targets
4
targets potential
4
potential combined
4
combined therapies
4

Similar Publications

The gut commensal attenuates indole-AhR signaling and restores ASD-like behaviors with BTBR mice.

Front Microbiol

August 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Autism spectrum disorders (ASD), a group of neurodevelopmental disorders characterized by the core symptoms of impaired social communication and stereotyped behaviors, is strongly associated with dysregulated microbiota-gut-brain axis. Emerging evidence suggests that , which showed reduced abundance in ASD cohorts, holds therapeutic potential, though its interaction with host remain unexplored. Here, we investigated the efficacy and molecular basis of 4P-15 (4P-15) in BTBR /J (BTBR) mice, an idiopathic ASD mouse model.

View Article and Find Full Text PDF

Genetic modifiers of epilepsy: A narrative review.

Mol Cell Neurosci

September 2025

Department of Personalized & Molecular Medicine, Era University, Lucknow, India.

Epilepsy is a neurological disorder that shows strong genetic control on the timing and onset of symptoms and drug response variability. Some epilepsy syndromes have clear monogenic mutations but genes with control on the phenotype and severity of the disorder and drug sensitivity are present in the whole genetic profile. Genetic modifiers are not the cause of epilepsy but control significant networks such as synaptic plasticity and ion channels and neurodevelopment and neuroinflammation and therefore the reason why two individuals with the same primary mutations have different clinical courses.

View Article and Find Full Text PDF

Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.

View Article and Find Full Text PDF

GABA receptor availability in clinical high-risk and first-episode psychosis: a [C]Ro15-4513 positron emission tomography study.

Mol Psychiatry

September 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.

Disrupted gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of schizophrenia. Reductions in hippocampal GABAergic neurons have been found in schizophrenia, and increased hippocampal perfusion has been described in schizophrenia and in people at clinical high-risk for psychosis (CHRp). We have also found decreases in hippocampal GABA receptors containing the α5 subunit (GABARα5) in a well-validated neurodevelopmental rat model of relevance for schizophrenia.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNA with their cognate amino acids, an essential step in protein biosynthesis. While biallelic mutations in aaRSs often result in severe multi-organ dysfunction accompanied by developmental delays, monoallelic mutations typically cause milder, tissue-specific symptoms. However, a de novo monoallelic nonsense mutation (R534*) in the asparaginyl-tRNA synthetase (AsnRS)-resulting in a premature stop codon and 15-residue C-terminal truncation-has been identified in multiple families and is associated with severe neurodevelopmental symptoms.

View Article and Find Full Text PDF