A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Use of Next-Generation Sequencing in Pharmacogenomics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Next-generation sequencing (NGS) methods have become more commonly performed in clinical and research laboratories.

Methods: This review summarizes the current laboratory NGS-based diagnostic approaches in pharmacogenomics including targeted multi-gene panel sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS).

Results: Clinical laboratories perform multiple non-uniform types of pharmacogenetic panels, which can reduce the overall number of single-gene tests to be more cost-efficient. Compared to the targeted multi-gene panels, which are not typically designed to detect novel variants, WES and WGS have a greater potential to identify secondary pharmacogenomic findings, which might be predictive for the pharmacotherapy outcome of different patient settings. WGS overcomes the limitations of WES enabling a more accurate exome-sequencing at appropriate coverage and the sequencing of non-coding regions. Different NGS-based study designs with different test strategies and study populations, varying sample sizes, and distinct analytical and interpretation procedures lead to different identification results of pharmacogenomic variants.

Conclusions: The rapid progress in gene sequencing technologies will overcome the clinical and laboratory challenges of WES and WGS. Further high throughput NGS-based pharmacogenomics studies in different populations and patient settings are necessary to expand knowledge about rare functional variants and to enhance translation in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.7754/Clin.Lab.2023.230103DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
targeted multi-gene
8
wes wgs
8
patient settings
8
sequencing
6
sequencing pharmacogenomics
4
pharmacogenomics background
4
background next-generation
4
sequencing ngs
4
ngs methods
4

Similar Publications