98%
921
2 minutes
20
We used the deep learning tool ProteinMPNN to redesign ubiquitin (Ub) as a specific and functionally stimulating/enhancing binder of the Rsp5 E3 ligase. We generated 20 extensively mutated─up to 37 of 76 residues─recombinant Ub variants (UbVs), named R1 to R20, displaying well-folded structures and high thermal stabilities. These UbVs can also form stable complexes with Rsp5, as predicted using AlphaFold2. Three of the UbVs bound to Rsp5 with low micromolar affinity, with R4 and R12 effectively enhancing the Rsp5 activity six folds. AlphaFold2 predicts that R4 and R12 bind to Rsp5's exosite in an identical manner to the Rsp5-Ub template, thereby allosterically activating Rsp5-Ub thioester formation. Thus, we present a virtual solution for rapidly and cost-effectively designing UbVs as functional modulators of Ub-related enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.3c00042 | DOI Listing |
mBio
August 2025
Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Pathogenic microorganisms use varied cellular processes to adapt to the particular stresses encountered in the infected host. These stresses include rapid alterations in ambient temperature, nutrient availability, and extracellular pH. Fungal pathogens, therefore, rely on the activation of stress response pathways such as the Pal/Rim pathway to adapt to the neutral pH encountered when infecting mammals.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
August 2025
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland. Electronic address:
Transfer RNA (tRNA) biogenesis in yeast involves synthesis of the primary transcript by RNA polymerase III (Pol III), followed by processing to remove 5' and 3' ends, further maturation, and export to the cytoplasm. In the present study, we found that both tRNA transcription and the initial processing of tRNA precursors are affected by the ubiquitin ligase Rsp5. We observed high levels of unprocessed primary tRNA transcripts in rsp5 mutants at elevated temperature, which were reduced upon the overexpression of RPR1, the catalytic subunit of RNase P.
View Article and Find Full Text PDFAutophagy
August 2025
Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
Cells can use two different pathways for recycling their non-essential components in the lysosome during nutritional stress: macroautophagy and microautophagy. While the well-established macroautophagy pathway requires de novo formation of the double-membrane autophagosome, microautophagy involves direct engulfment of cargo by the lysosomal membrane. Recently, using a yeast model, we identified a novel microreticulophagy pathway induced by nutritional stress that selectively clears aberrant membrane proteins that accumulate during normal growth.
View Article and Find Full Text PDFCell Rep
February 2025
Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA. Electronic address:
Aberrant accumulation and clearance of membrane proteins is associated with disease. Membrane proteins are inserted first to the endoplasmic reticulum (ER). During normal growth, two quality control (QC) processes, ER-associated degradation and macro-ER-phagy, deliver misfolded and excess membrane proteins for degradation in the proteasome and lysosome, respectively.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
Morels ( spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood.
View Article and Find Full Text PDF