A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Construction of a Label-Free Ratiometric Biosensor Based on Target Recycling Amplification and Hg-ZnSe QDs for Assay of BChE and OPs. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, we constructed a label-free ratiometric fluorescence biosensing strategy for the determination of butyrylcholinesterase (BChE) activity and organophosphorus (OPs) concentration. BChE promoted the hydrolysis of iodized -butyrylthiocholine (BTCh) into a reducing substance thiocholine, which can decompose CoOOH nanosheets (CoOOH NSs) to Co. Subsequently, the single-stranded DNA (ssDNA) on the surface of CoOOH NSs was released. Then, ssDNA hybridized with hairpin DNA (h-DNA) and triggered the target recycling amplification process, producing large amounts of G-quadruplex. After adding thioflavin T (ThT), the target BChE was converted into activatable G-quadruplex/ThT with an amplified yellow fluorescence signal. The addition of OPs could significantly inhibit the hydrolysis of BTCh by BChE and thus unable to produce the yellow fluorescence G-quadruplex/ThT complex. Throughout the entire process, the fluorescence intensity of Hg-ZnSe QDs as a reference signal remained unchanged at 630 nm. Furthermore, this work provided an effective approach for detecting the BChE activity in serum samples and OPs in fruits and vegetables.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c02902DOI Listing

Publication Analysis

Top Keywords

label-free ratiometric
8
target recycling
8
recycling amplification
8
hg-znse qds
8
bche activity
8
coooh nss
8
yellow fluorescence
8
bche
6
construction label-free
4
ratiometric biosensor
4

Similar Publications