98%
921
2 minutes
20
Despite ample experimental data indicating a role of inflammatory mediators in the behavioral and neurobiological manifestations elicited by exposure to physical and psychologic stressors, causative associations between systemic low-grade inflammation and central nervous system inflammatory processes in posttraumatic stress disorder (PTSD) patients remain largely conceptual. As in other stress-related disorders, pro-inflammatory activity may play an equivocal role in PTSD pathophysiology, one that renders indiscriminate employment of anti-inflammatory agents of questionable relevance. In fact, as several pieces of preclinical and clinical research convergingly suggest, timely and targeted potentiation rather than inhibition of inflammatory responses may actually be beneficial in patients who are characterized by suppressed microglia function in the face of systemic low-grade inflammation. The deleterious impact of chronic stress-associated inflammation on the systemic level may, thus, need to be held in context with the - often not readily apparent - adaptive payoffs of low-grade inflammation at the tissue level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845099 | PMC |
http://dx.doi.org/10.2174/1570159X21666230807152051 | DOI Listing |
Ann Afr Med
August 2025
Department of General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, India.
Background: Prediabetes represents a transitional state in glucose metabolism with an increasing global and national prevalence, particularly in India. Recent evidence suggests that both thyroid dysfunction and chronic low-grade inflammation may play pivotal roles in the progression of prediabetes to overt Type 2 diabetes mellitus (T2DM). Thyroid hormones regulate glucose metabolism, while inflammatory markers such as white blood cell (WBC) count and high-sensitivity C-reactive protein (hs-CRP) are indicators of systemic inflammation often elevated in metabolic disorders.
View Article and Find Full Text PDFOsteoporos Int
September 2025
Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400037, China.
Diabetes and osteoporosis are common chronic diseases worldwide, and there is a complex pathological relationship between the two. Due to hyperglycemia, insulin resistance, and accumulation of advanced glycation end products (AGEs), diabetic patients often show a higher risk of fractures. At the same time, chronic low-grade inflammation and oxidative stress caused by diabetes also play an important role in the occurrence of osteoporosis, disrupting the balance of bone remodeling.
View Article and Find Full Text PDFInt J Cardiol
September 2025
Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany. Electronic address:
Background: Patients with Fontan circulation are often advised to avoid hypoxic exposure due to presumed cardiopulmonary vulnerability. Low-grade inflammation has also been reported in this population and may be influenced by hypoxia and/or exercise. Based on the potential interaction between hypoxia and submaximal exercise in modulating inflammatory signaling, we hypothesized that this combination could exacerbate subclinical inflammation.
View Article and Find Full Text PDF, commonly known as sweet potato, is an increasingly valued functional food because of its vivid coloration and rich bioactive compounds, especially anthocyanins and carotenoids, such as ipomoeaxanthin. This review focuses on the bioavailability, mechanisms of action, and therapeutic potential of sweet potato-derived anthocyanins in diabetes and metabolic disorders. Anthocyanins, which are plant pigments, exhibit high antioxidant activity by scavenging free radicals and stimulating endogenous antioxidant enzymes such as catalase and superoxide dismutase, thereby protecting cellular structures from damage and reducing oxidative damage in vital metabolic organs such as the pancreas, liver, brain, and muscles.
View Article and Find Full Text PDFESC Heart Fail
September 2025
Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.
Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.
View Article and Find Full Text PDF