A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Role of site-site interaction on the phase equilibria of multiple-site associating fluids in a functionalized slit pore. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vapor-liquid phase equilibria for multiple sites associating fluids with different associating strengths are investigated in a slit pore using grand-canonical transition matrix Monte Carlo method. The increase of critical temperature from two-site to four-site associating fluids at constant site strength is quite significant as compared to that of the one-site to two-site associating fluids, which is more pronounced at higher associating strength (* = 6). Monomer fraction and cluster size distribution are used to investigate the association of fluid particles in coexistence phases. The monomer fraction for both phases decreases with increased associating sites on the fluid particles due to more site-site interaction with neighboring fluid particles and forming a larger cluster. Therefore, the number of associating sites and their distribution play a vital role in the association of fluid particles. Moreover, the saturation chemical potential changes with the arrangement of the sites. For two-site associating fluids, we observe early vapor-liquid transition when the sites are oppositely placed, and when the sites are placed at 90°, the vapor-liquid transition is observed at the higher chemical potential. Moreover, four-site associating fluids with a square arrangement show early vapor-liquid phase transition, mainly because these arrangements of sites effectively interact with surface sites and the molecules in the next layer.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/acede1DOI Listing

Publication Analysis

Top Keywords

associating fluids
24
fluid particles
16
associating
10
site-site interaction
8
phase equilibria
8
slit pore
8
vapor-liquid phase
8
sites
8
four-site associating
8
two-site associating
8

Similar Publications