98%
921
2 minutes
20
Proinsulin Like Growth Factor (prolGF1) and myostatin (Mstn) regulate muscle regeneration when intravenously delivered. We set out to test if chloroplast bioencapsulated forms of these proteins may serve as a non-invasive means of drug delivery through the digestive system. We created tobacco () plants carrying and fusion genes, in which fusion with the immunoglobulin G Fc domain improved both protein stability and absorption in the small intestine. No transplastomic plants were obtained with the gene, suggesting that the protein is toxic to plant cells. proIGF-I-Fc1 protein levels were too law to enable testing. However, GFP-Fc1 accumulated at a high level, enabling evaluation of chloroplast-made Fc fusion proteins for oral delivery. Tobacco leaves were lyophilized for testing in a mouse system. We report that the orally administered GFP-Fc fusion protein (5.45 μg/g GFP-Fc) has been taken up by the intestinal epithelium cells, evidenced by confocal microscopy. GFP-Fc subsequently entered the circulation where it was detected by ELISA. Data reported here confirm that chloroplast expression and oral administration of lyophilized leaves is a potential delivery system of therapeutic proteins fused with Fc, with the advantage that the proteins may be stored at room temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402193 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-3073879/v1 | DOI Listing |
BMC Public Health
September 2025
Heidelberg Institute of Global Health, Heidelberg University, Bergheimer Str. 20, Zimmer 317, 69115, Heidelberg, Germany.
Background: People living in prison face exceptionally high prevalence rates of tooth decay, periodontal disease, and poor oral health-related quality of life. Despite its importance, various aspects of oral healthcare in prison settings remain understudied. The present study investigates the barriers and facilitators associated with providing and utilizing oral health services in prison settings, drawing on insights from prison health experts, managerial and custodial staff, healthcare providers, and individuals with lived experience of imprisonment.
View Article and Find Full Text PDFPharm Dev Technol
September 2025
School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, wenhua Road 103, Shenyang 110016, PR China.
Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.
View Article and Find Full Text PDFOrv Hetil
September 2025
1 Szegedi Tudományegyetem, Szent-Györgyi Albert Orvostudományi Kar, Klinikai Központ, Fül-Orr-Gégészeti és Fej-Nyaksebészeti Klinika Szeged, Tisza Lajos körút 111., 6725 Magyarország.
ACS Appl Mater Interfaces
September 2025
School of Science, RMIT University, P.O. Box 2476, Melbourne 3001, Australia.
Lutein is a plant pigment beneficial for eye health and for preventing retinal-related diseases. However, lutein is unstable, with low oral bioavailability. In this study, lutein fromwas loaded into cubosome lipid nanocarriers, both neutral (lutein-MO) and cationic (lutein-MO-DOTAP); the release, stability, and retinal penetration of the drug were improved.
View Article and Find Full Text PDFTher Deliv
September 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India.
Background: Type 2 diabetes mellitus (T2DM) is the most devastating disease and it necessitates therapeutic intervention for its effective management. Human Glucagon-like peptide-1 (HuGLP-1) is the potential candidate in the treatment of T2DM; however, it limits its utilization owing to its solubility and stability issues.
Aims: The current investigation aims to develop HuGLP-1-loaded bilosomes as a novel strategy for managing T2DM.