98%
921
2 minutes
20
The present study delved into the enhancement of essential oil (EO) extraction process from Chlorella sp. through the implementation of ultrasound-assisted extraction. The Taguchi method was instrumental in determining the ideal parameters for the extraction process, which encompassed ultrasonic amplitude, reaction duration, hexane/ethanol (HE/EtOH) ratio, and processing temperature. The empirical findings indicated that optimal EO yield was realized at an ultrasonic amplitude of 80%, a reaction timeframe of 15 min, a HE/EtOH proportion of 3:1, and a temperature setting of 40 °C. These optimal conditions were further substantiated through additional experimentation, resulting in an EO yield of 18.8 ± 0.2%. A fatty acid profile analysis disclosed that the extracted EO predominantly consisted of long-chain fatty acids (C14-C20), with Palmitic, Heptadecanoic, Oleic, and Linoleic acids featuring as the main components. Nevertheless, a high unsaturation rate of 37.9% in the EO could potentially render it vulnerable to oxidative deterioration during storage, consequently affecting the quality of the ensuing biodiesel. A life cycle assessment of the sonication technique utilized for biodiesel production from Chlorella sp. highlighted that lipid extraction was the principal contributor to global warming and ecotoxicity, as per the CML and TRACI methods. Hence, the ultrasound-assisted extraction of EO from Chlorella sp. appears to be a promising and ecologically viable substitute to conventional techniques employed for biodiesel production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-023-00836-6 | DOI Listing |
Curr Microbiol
September 2025
Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.
A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.
View Article and Find Full Text PDFPediatr Pulmonol
September 2025
Department of Pharmacology, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, India.
Background: Respiratory distress syndrome (RDS) is a leading cause of neonatal morbidity and mortality in low- and middle-income countries (LMICs). The feasibility and effectiveness of bovine versus porcine surfactants via less invasive surfactant administration (LISA) remain unstudied in LMICs. We compared clinical outcomes and cost-effectiveness of BLES versus poractant alfa in preterm infants with RDS managed with LISA.
View Article and Find Full Text PDFMol Pharm
September 2025
Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Phytosterols are a class of natural steroids found in various plants. Commercially available phytosterols (PS) are primarily extracted from the deodorized distillate of soybean oil and consist predominantly of β-sitosterol with smaller amounts of stigmasterol and campesterol. Numerous studies have consistently demonstrated the significant lipid-lowering activity of PS.
View Article and Find Full Text PDFFood Res Int
November 2025
Centre for Pre-clinical Studies, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
This is the first report on the functional potential of Akhuni, an ethnic food of Northeast India, against diabetes. Akhuni is a traditional fermented soybean product known for its umami taste and delicacy, commonly used in the cuisine of Northeast India. Treatment with ethanolic extract of Akhuni (AKET) for 8 weeks decreased glucose levels in the blood, increased body mass and enhanced the ability to tolerate glucose dose-dependently in the streptozotocin-induced diabetic mice in comparison with the group of diabetic control mice (DBC).
View Article and Find Full Text PDFFood Res Int
November 2025
Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition
Type 2 diabetes mellitus (T2DM) is a a complex metabolic disorder that poses a serious threat to human health. Although polyphenol extract from rapeseed meal (RMP) has demonstrated inhibitory activity against α-glucosidase, the alleviating effects on T2DM and the underlying molecular mechanisms remain largely unexplored in T2DM. In this study, the antidiabetic effects of RMP were investigated using a T2DM mouse model induced by a high-fat diet (HFD) combined with streptozotocin (STZ) administration.
View Article and Find Full Text PDF