98%
921
2 minutes
20
Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver(I) binds with increasing occupancy in T-T and U-U pairs at elevated pH levels, and we exploited this to capture silver(I) and mercury(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C-C pair with both silver(I) and mercury(II). Finally, we extend our paradigm to capture cadmium(II) in T-T pairs together with mercury(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c05478 | DOI Listing |
Life Sci
September 2025
Department of Pharmacology, Faculty of Medicine, University of Granada, 18016, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012, Granada, Spain. Electronic address: fnieto@u
The sigma-1 receptor (σ1R) is a chaperone involved in multiple physiological and pathological processes, including pain modulation, neuroprotection, and neurodegenerative diseases. Despite its functional significance, its precise roles remain unclear due to the lack of suitable models for detailed mechanistic studies. In this work, we describe the generation and phenotypic characterization of a novel σ1R knockout (σ1R KO) rat model.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
University of Chinese Academy of Sciences, Beijing, China.
The divergence in folding pathways between RNA co-transcriptional folding (CTF) and free folding (FF) is crucial for understanding dynamic functional regulation of RNAs. Here, we developed a simplified all-atom molecular dynamics framework to systematically compare the folding kinetics of an RNA hairpin (PDB:1ZIH) under CTF and FF conditions. By analyzing over 800 microseconds of simulated trajectory, we found that despite convergence to identical native conformations across CTF simulations (with varied transcription rates) and FF simulations, they exhibit distinct preferences for the folding pathways defined by the order of base-pair formation.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
Musculoskeletal disorders, including bone fractures, osteoarthritis, and muscle injuries, represent a leading cause of global disability, revealing the urgency for advanced therapeutic solutions. However, current therapies face limitations including donor-site morbidity, immune rejection, and inadequate mimicry of dynamic tissue repair processes. DNA-based hydrogels emerge as transformative platforms for musculoskeletal reconstruction, with their sequence programmability, dynamic adaptability, and biocompatibility to balance structural support and biological functions.
View Article and Find Full Text PDFCase Rep Genet
August 2025
Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.
is the primary high-risk predisposition gene for familial cutaneous melanoma. In the Netherlands, most carriers of pathogenic germline variants in harbor a unique, population-specific founder variant, c.225_243del, commonly referred to as p16-.
View Article and Find Full Text PDFInt Psychogeriatr
September 2025
Department of Educational Science and Psychology, University of Florence, Florence, Italy.
Background: The aging of the world's population has led to a growing need for innovative strategies to promote active aging and bridge generational divides. Intergenerational Programs (IGPs) that engage young adults (18-30 years) and older adults (65 + years) have demonstrated the potential to improve well-being and reduce ageism. However, the evidence for this pairing of ages is still fragmentary.
View Article and Find Full Text PDF