Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unlabelled: The rapid expansion of virtual reality (VR) and augmented reality (AR) into various applications has increased the demand for hands-free input interfaces when traditional control methods are inapplicable (e.g., for paralyzed individuals who cannot move their hands). Facial electromyogram (fEMG), bioelectric signals generated from facial muscles, could solve this problem. Discriminating facial gestures using fEMG is possible because fEMG signals vary with these gestures. Thus, these signals can be used to generate discrete hands-free control commands. This study implemented an fEMG-based facial gesture recognition system for generating discrete commands to control an AR or VR environment. The fEMG signals around the eyes were recorded, assuming that the fEMG electrodes were embedded into the VR head-mounted display (HMD). Sixteen discrete facial gestures were classified using linear discriminant analysis (LDA) with Riemannian geometry features. Because the fEMG electrodes were far from the facial muscles associated with the facial gestures, some similar facial gestures were indistinguishable from each other. Therefore, this study determined the best facial gesture combinations with the highest classification accuracy for 3-15 commands. An analysis of the fEMG data acquired from 15 participants showed that the optimal facial gesture combinations increased the accuracy by 4.7%p compared with randomly selected facial gesture combinations. Moreover, this study is the first to investigate the feasibility of implementing a subject-independent facial gesture recognition system that does not require individual user training sessions. Lastly, our online hands-free control system was successfully applied to a media player to demonstrate the applicability of the proposed system.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00277-9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382369 | PMC |
http://dx.doi.org/10.1007/s13534-023-00277-9 | DOI Listing |