Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Gutta-percha's lack of adhesion has been presented as a drawback to avoid gaps at sealer/gutta-percha interface. Plasma treatments have been scarcely assessed on gutta-percha surfaces as a method of enhancing adhesiveness. This study aimed to evaluate the effect of low-pressure Argon and Oxygen plasma atmospheres on conventional and bioceramic gutta-percha standardized smooth discs, assessing their roughness, surface free energy, chemical structure, and sealer wettability. A Low-Pressure Plasma Cleaner by Diener Electronic (Zepto Model) was used. Different gases (Argon or Oxygen), powers (25 W, or 50 W), and exposure times (30 s, 60 s, 120 s, or 180 s) were tested in control and experimental groups. Kruskal-Wallis and Student's t-test were used in data analysis. Statistically significant differences were detected when P < 0.05. Both gases showed different behaviors according to the parameters selected. Even though chemical changes were detected, the basic molecular structure was maintained. Argon or Oxygen plasma treatments favoured the wetting of conventional and bioceramic gutta-perchas by Endoresin and AH Plus Bioceramic sealers (P < 0.001). Overall, the functionalization of gutta-percha surfaces with Argon or Oxygen plasma treatments can increase roughness, surface free energy and wettability, which might improve its adhesive properties when compared to non-treated gutta-percha.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387088 | PMC |
http://dx.doi.org/10.1038/s41598-023-37372-x | DOI Listing |