A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimization of iron-ZIF-8 catalysts for degradation of tartrazine in water by Fenton-like reaction. | LitMetric

Optimization of iron-ZIF-8 catalysts for degradation of tartrazine in water by Fenton-like reaction.

Chemosphere

CQUM, Centre of Chemistry, Chemistry Department, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. Electronic address:

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optimization of iron zeolitic imidazole framework-8 (FeZIF-8) nanoparticles, as heterogeneous catalysts, were synthesized and evaluated by the Fenton-like reaction for to degrade tartrazine (Tar) in aqueous environment. To achieve this, ZIF-8 nanoparticles were modified with different iron species (Fe or FeO), and subsequently assessed through the Fenton-like oxidation. The effect of different parameters such as the concentration of hydrogen peroxide, the mass of catalyst and the contact time of reaction on the degradation of Tar by Fenton-like oxidation was studied by using the Box-Behnken design (BBD). The BBD model indicated that the optimum catalytic conditions for Fenton-like reaction with an initial pollutant concentration of 30 ppm at pH 3.0 were T = 40 °C and 12 mM of HO, 2 g/L of catalyst and 4 h of reaction. The maximum Tar conversion value achieved with the best catalyst, FeZIF-8, was 66.5% with high mineralization (in terms of decrease of total organic carbon - TOC), 44.2%. To assess phytotoxicity, the germination success of corn kernels was used as an indicator in the laboratory. The results show that the catalytic oxidation by Fenton-like reaction using heterogeneous iron ZIF-8 catalysts is a viable alternative for treating contaminated effluents with organic pollutants and highlighted the importance of the validation of the optimized experimental conditions by mathematical models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139634DOI Listing

Publication Analysis

Top Keywords

fenton-like reaction
16
fenton-like oxidation
8
fenton-like
6
reaction
6
optimization iron-zif-8
4
iron-zif-8 catalysts
4
catalysts degradation
4
degradation tartrazine
4
tartrazine water
4
water fenton-like
4

Similar Publications