A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385900PMC
http://dx.doi.org/10.3390/ma16145075DOI Listing

Publication Analysis

Top Keywords

residual stress
24
ultrasonic minimum
12
minimum reflection
12
residual stresses
12
residual
9
reflection measurement
8
shot peening
8
nickel-based superalloy
8
study utilized
8
utilized ultrasonic
8

Similar Publications