A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

GIT-Net: An Ensemble Deep Learning-Based GI Tract Classification of Endoscopic Images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents an ensemble of pre-trained models for the accurate classification of endoscopic images associated with Gastrointestinal (GI) diseases and illnesses. In this paper, we propose a weighted average ensemble model called GIT-NET to classify GI-tract diseases. We evaluated the model on a KVASIR v2 dataset with eight classes. When individual models are used for classification, they are often prone to misclassification since they may not be able to learn the characteristics of all the classes adequately. This is due to the fact that each model may learn the characteristics of specific classes more efficiently than the other classes. We propose an ensemble model that leverages the predictions of three pre-trained models, DenseNet201, InceptionV3, and ResNet50 with accuracies of 94.54%, 88.38%, and 90.58%, respectively. The predictions of the base learners are combined using two methods: model averaging and weighted averaging. The performances of the models are evaluated, and the model averaging ensemble has an accuracy of 92.96% whereas the weighted average ensemble has an accuracy of 95.00%. The weighted average ensemble outperforms the model average ensemble and all individual models. The results from the evaluation demonstrate that utilizing an ensemble of base learners can successfully classify features that were incorrectly learned by individual base learners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376874PMC
http://dx.doi.org/10.3390/bioengineering10070809DOI Listing

Publication Analysis

Top Keywords

average ensemble
16
weighted average
12
base learners
12
classification endoscopic
8
endoscopic images
8
ensemble
8
pre-trained models
8
ensemble model
8
evaluated model
8
individual models
8

Similar Publications