A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Detection of Hindwing Landmarks Using Transfer Learning and High-Resolution Networks. | LitMetric

Detection of Hindwing Landmarks Using Transfer Learning and High-Resolution Networks.

Biology (Basel)

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hindwing venation is one of the most important morphological features for the functional and evolutionary analysis of beetles, as it is one of the key features used for the analysis of beetle flight performance and the design of beetle-like flapping wing micro aerial vehicles. However, manual landmark annotation for hindwing morphological analysis is a time-consuming process hindering the development of wing morphology research. In this paper, we present a novel approach for the detection of landmarks on the hindwings of leaf beetles (Coleoptera, Chrysomelidae) using a limited number of samples. The proposed method entails the transfer of a pre-existing model, trained on a large natural image dataset, to the specific domain of leaf beetle hindwings. This is achieved by using a deep high-resolution network as the backbone. The low-stage network parameters are frozen, while the high-stage parameters are re-trained to construct a leaf beetle hindwing landmark detection model. A leaf beetle hindwing landmark dataset was constructed, and the network was trained on varying numbers of randomly selected hindwing samples. The results demonstrate that the average detection normalized mean error for specific landmarks of leaf beetle hindwings (100 samples) remains below 0.02 and only reached 0.045 when using a mere three samples for training. Comparative analyses reveal that the proposed approach out-performs a prevalently used method (i.e., a deep residual network). This study showcases the practicability of employing natural images-specifically, those in ImageNet-for the purpose of pre-training leaf beetle hindwing landmark detection models in particular, providing a promising approach for insect wing venation digitization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376506PMC
http://dx.doi.org/10.3390/biology12071006DOI Listing

Publication Analysis

Top Keywords

leaf beetle
20
beetle hindwing
12
hindwing landmark
12
beetle hindwings
8
landmark detection
8
hindwing
6
beetle
6
leaf
6
detection
5
detection hindwing
4

Similar Publications