A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multidimensional Drivers of Mercury Distribution in Global Surface Soils: Insights from a Global Standardized Field Survey. | LitMetric

Multidimensional Drivers of Mercury Distribution in Global Surface Soils: Insights from a Global Standardized Field Survey.

Environ Sci Technol

Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil stores a large amount of mercury (Hg) that has adverse effects on human health and ecosystem safety. Significant uncertainties still exist in revealing environmental drivers of soil Hg accumulation and predicting global Hg distribution owing to the lack of field data from global standardized analyses. Here, we conducted a global standardized field survey and explored a holistic understanding of the multidimensional environmental drivers of Hg accumulation in global surface soils. Hg content in surface soils from our survey ranges from 3.8 to 618.2 μg kg with an average of 74.0 μg kg across the globe. Atmospheric Hg deposition, particularly vegetation-induced elemental Hg deposition, is the major source of surface soil Hg. Soil organic carbon serves as the major substrate for sequestering Hg in surface soils and is significantly influenced by agricultural management, litterfall, and elevation. For human activities, changing land-use could be a more important contributor than direct anthropogenic emissions. Our prediction of a new global Hg distribution highlights the hot spots (high Hg content) in East Asia, the Northern Hemispheric temperate/boreal regions, and tropical areas, while the cold spots (low Hg content) are in arid regions. The holistic understanding of multidimensional environmental drivers helps to predict the Hg distribution in global surface soils under a changing global environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c04313DOI Listing

Publication Analysis

Top Keywords

surface soils
20
global surface
12
global standardized
12
environmental drivers
12
global
9
distribution global
8
standardized field
8
field survey
8
global distribution
8
holistic understanding
8

Similar Publications