Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Crop contamination by aflatoxin B1 (AFB1), an produced toxin, is frequently observed in tropical and subtropical regions. This phenomenon is emerging in Europe, most likely as a result of climate change. Alternative methods, such as biocontrol agents (BCAs), are currently being developed to reduce the use of chemicals in the prevention of mycotoxin contamination. Actinobacteria are known to produce many bioactive compounds, and some of them can reduce in vitro AFB1 concentration. In this context, the present study aims to analyze the effect of a cell-free supernatant (CFS) from culture on the development of , as well as on its transcriptome profile using microarray assay and its impact on AFB1 concentration. Results demonstrated that in vitro, the CFS reduced the dry weight and conidiation of from 77% and 43%, respectively, and was therefore associated with a reduction in AFB1 concentration reduction to levels under the limit of quantification. The transcriptomic data analysis revealed that 5198 genes were differentially expressed in response to the CFS exposure and among them 5169 were downregulated including most of the genes involved in biosynthetic gene clusters. The aflatoxins' gene cluster was the most downregulated. Other gene clusters, such as the aspergillic acid, aspirochlorine, and ustiloxin B gene clusters, were also downregulated and associated with a variation in their concentration, confirmed by LC-HRMS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467112 | PMC |
http://dx.doi.org/10.3390/toxins15070428 | DOI Listing |