A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inhalation is a major route by which human exposure to substances can occur. Resources have therefore been dedicated to optimize human-relevant in vitro approaches that can accurately and efficiently predict the toxicity of inhaled chemicals for robust risk assessment and management. In this study-the IN vitro Systems to PredIct REspiratory toxicity Initiative-2 cell-based systems were used to predict the ability of chemicals to cause portal-of-entry effects on the human respiratory tract. A human bronchial epithelial cell line (BEAS-2B) and a reconstructed human tissue model (MucilAir, Epithelix) were exposed to triethoxysilane (TES) and trimethoxysilane (TMS) as vapor (mixed with N2 gas) at the air-liquid interface. Cell viability, cytotoxicity, and secretion of inflammatory markers were assessed in both cell systems and, for MucilAir tissues, morphology, barrier integrity, cilia beating frequency, and recovery after 7 days were also examined. The results show that both cell systems provide valuable information; the BEAS-2B cells were more sensitive in terms of cell viability and inflammatory markers, whereas MucilAir tissues allowed for the assessment of additional cellular effects and time points. As a proof of concept, the data were also used to calculate human equivalent concentrations. As expected, based on chemical properties and existing data, the silanes demonstrated toxicity in both systems with TMS being generally more toxic than TES. Overall, the results demonstrate that these in vitro test systems can provide valuable information relevant to predicting the likelihood of toxicity following inhalation exposure to chemicals in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535780PMC
http://dx.doi.org/10.1093/toxsci/kfad074DOI Listing

Publication Analysis

Top Keywords

vitro systems
8
respiratory toxicity
8
systems predict
8
cell viability
8
inflammatory markers
8
cell systems
8
mucilair tissues
8
systems provide
8
provide valuable
8
systems
7

Similar Publications