An ensemble modeling approach to predict spatial risk patches of the Persian leopard-livestock conflicts in Lorestan Province, Iran.

Environ Sci Pollut Res Int

Lorestan Provincial Office of the Department of Environment, Khorramabad, Iran.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study was conducted in the Lorestan Province in the west of Iran with two objectives of identifying major environmental variables in spatial risk modeling and identifying spatial risk patches of livestock predation by the Persian leopard. An ensemble approach of three models of maximum entropy (MaxEnt), generalized boosting model (GBM), and random forest (RF) were applied for spatial risk modeling. Our results revealed that livestock density, distance to villages, forest density, and human population density were the most important variables in spatial risk modeling of livestock predation by the leopard. The center of the study area had the highest probability of livestock predation by the leopard. Ten spatial risk patches of livestock predation by the leopard were identified in the study area. In order to mitigate the revenge killing of the leopards, the findings of this study highlight the imperative of implementing strategies by the Department of Environment (DoE) to effectively accompany the herds entering the wildlife habitats with shepherds and a manageable number of guarding dogs. Accordingly, the identified risk patches in this study deserve considerable attention, especially three primary patches found in the center and southeast of Lorestan Province.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-28963-2DOI Listing

Publication Analysis

Top Keywords

spatial risk
24
risk patches
16
livestock predation
16
lorestan province
12
risk modeling
12
predation leopard
12
variables spatial
8
patches livestock
8
study area
8
risk
7

Similar Publications

pH-responsive activation of Tet-On inducible CAR-T cells enables spatially selective treatment of targeted solid tumors at reduced safety risk.

Natl Sci Rev

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.

Chimeric antigen receptor T (CAR-T)-cell therapy is a promising resolution for solid tumors, but its corresponding clinical translation has been hindered by unsatisfactory therapeutic potency and severe cytokine release syndrome. Herein, tetracycline (Tet)-On inducible human epidermal growth factor receptor 1 (HER1)-targeted CAR-T (Tet-HER1-CAR-T) cells were engineered to enable spatially selective activation at tumor sites by doxycycline (Doxy), which is delivered by pH-responsive stealth liposomal calcium carbonate nanoparticles (Doxy@CaCO-PEG). Compared with the intravenous administration of conventional HER1-CAR-T cells and Tet-HER1-CAR-T cells activated by free Doxy, concurrent intravenous administration of Tet-HER1-CAR-T cells and Doxy@CaCO-PEG leads to the localized tumor activation of Tet-HER1-CAR-T cells and reduced systemic secretion of inflammatory cytokines.

View Article and Find Full Text PDF

Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.

View Article and Find Full Text PDF

Background: Radiotherapy workflows conventionally deliver one treatment plan multiple times throughout the treatment course. Non-coplanar techniques with beam angle optimization or dosimetrically optimized pathfinding (DOP) exploit additional degrees of freedom to improve spatial conformality of the dose distribution compared to widely used techniques like volumetric-modulated arc therapy (VMAT). The temporal dimension of dose delivery can be exploited using multiple plans (sub-plans) within one treatment course.

View Article and Find Full Text PDF

Brain network signatures of spatial memory in adolescents at risk for substance use.

Alcohol Clin Exp Res (Hoboken)

September 2025

Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, Massachusetts, USA.

Background: Examining youth before engagement in risky behaviors may help identify neurobiological signatures that prospectively predict susceptibility to initiating and escalating alcohol and other substance use. Given that frontal and medial temporal (e.g.

View Article and Find Full Text PDF

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF