Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nicotine, minodronic acid, nicotinamide (niacin), zolpidem, zolimidine, and other pyridine-based chemicals play vital roles in medicine and biology. Pyridinecontaining drugs are widely available on the market to treat a wide range of human ailments. As a result of these advances, pyridine research is continually expanding, and there are now higher expectations for how it may aid in the treatment of numerous ailments. This evaluation incorporates data acquired from sources, like PubMed, to provide a thorough summary of the approved drugs and bioactivity data for compounds containing pyridine. Most of the reactions discussed in this article will provide readers with a deeper understanding of various pyridine-related examples, which is necessary for the creation of copper catalysis-based synthetic processes that are more accessible, secure, environmentally friendly, and practical, and that also have higher accuracy and selectivity. This paper also discusses significant innovations in the multi-component copper-catalyzed synthesis of N-heterocycles (pyridine), with the aim of developing precise, cost-effective, and environmentally friendly oxygenation and oxidation synthetic methods for the future synthesis of additional novel pyridine base analogs. Therefore, the review article will serve as a novel platform for researchers investigating copperbased pyridine compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1566524023666230726160056 | DOI Listing |