Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Personalized federated learning (PFL) addresses the data heterogeneity challenge faced by general federated learning (GFL). Rather than learning a single global model, with PFL a collection of models are adapted to the unique feature distribution of each site. However, current PFL methods rarely consider self-attention networks which can handle data heterogeneity by long-range dependency modeling and they do not utilize prediction inconsistencies in local models as an indicator of site uniqueness. In this paper, we propose FedDP, a novel fed erated learning scheme with d ual p ersonalization, which improves model personalization from both feature and prediction aspects to boost image segmentation results. We leverage long-range dependencies by designing a local query (LQ) that decouples the query embedding layer out of each local model, whose parameters are trained privately to better adapt to the respective feature distribution of the site. We then propose inconsistency-guided calibration (IGC), which exploits the inter-site prediction inconsistencies to accommodate the model learning concentration. By encouraging a model to penalize pixels with larger inconsistencies, we better tailor prediction-level patterns to each local site. Experimentally, we compare FedDP with the state-of-the-art PFL methods on two popular medical image segmentation tasks with different modalities, where our results consistently outperform others on both tasks. Our code and models are available at https://github.com/jcwang123/PFL-Seg-Trans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2023.3299206 | DOI Listing |