A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Application of an artificial intelligence-based tool in [F]FDG PET/CT for the assessment of bone marrow involvement in multiple myeloma. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: [F]FDG PET/CT is an imaging modality of high performance in multiple myeloma (MM). Nevertheless, the inter-observer reproducibility in PET/CT scan interpretation may be hampered by the different patterns of bone marrow (BM) infiltration in the disease. Although many approaches have been recently developed to address the issue of standardization, none can yet be considered a standard method in the interpretation of PET/CT. We herein aim to validate a novel three-dimensional deep learning-based tool on PET/CT images for automated assessment of the intensity of BM metabolism in MM patients.

Materials And Methods: Whole-body [F]FDG PET/CT scans of 35 consecutive, previously untreated MM patients were studied. All patients were investigated in the context of an open-label, multicenter, randomized, active-controlled, phase 3 trial (GMMG-HD7). Qualitative (visual) analysis classified the PET/CT scans into three groups based on the presence and number of focal [F]FDG-avid lesions as well as the degree of diffuse [F]FDG uptake in the BM. The proposed automated method for BM metabolism assessment is based on an initial CT-based segmentation of the skeleton, its transfer to the SUV PET images, the subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, six different SUV thresholds (Approaches 1-6) were applied for the definition of pathological tracer uptake in the skeleton [Approach 1: liver SUV × 1.1 (axial skeleton), gluteal muscles SUV × 4 (extremities). Approach 2: liver SUV × 1.5 (axial skeleton), gluteal muscles SUV × 4 (extremities). Approach 3: liver SUV × 2 (axial skeleton), gluteal muscles SUV × 4 (extremities). Approach 4: ≥ 2.5. Approach 5: ≥ 2.5 (axial skeleton), ≥ 2.0 (extremities). Approach 6: SUV liver]. Using the resulting masks, subsequent calculations of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in each patient were performed. A correlation analysis was performed between the automated PET values and the results of the visual PET/CT analysis as well as the histopathological, cytogenetical, and clinical data of the patients.

Results: BM segmentation and calculation of MTV and TLG after the application of the deep learning tool were feasible in all patients. A significant positive correlation (p < 0.05) was observed between the results of the visual analysis of the PET/CT scans for the three patient groups and the MTV and TLG values after the employment of all six [F]FDG uptake thresholds. In addition, there were significant differences between the three patient groups with regard to their MTV and TLG values for all applied thresholds of pathological tracer uptake. Furthermore, we could demonstrate a significant, moderate, positive correlation of BM plasma cell infiltration and plasma levels of β2-microglobulin with the automated quantitative PET/CT parameters MTV and TLG after utilization of Approaches 1, 2, 4, and 5.

Conclusions: The automated, volumetric, whole-body PET/CT assessment of the BM metabolic activity in MM is feasible with the herein applied method and correlates with clinically relevant parameters in the disease. This methodology offers a potentially reliable tool in the direction of optimization and standardization of PET/CT interpretation in MM. Based on the present promising findings, the deep learning-based approach will be further evaluated in future prospective studies with larger patient cohorts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547616PMC
http://dx.doi.org/10.1007/s00259-023-06339-5DOI Listing

Publication Analysis

Top Keywords

extremities approach
16
[f]fdg pet/ct
12
axial skeleton
12
skeleton gluteal
12
gluteal muscles
12
muscles suv × 4
12
suv × 4 extremities
12
pet/ct
8
bone marrow
8
multiple myeloma
8

Similar Publications