A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modelling for design and evaluation of industrial exoskeletons: A systematic review. | LitMetric

Modelling for design and evaluation of industrial exoskeletons: A systematic review.

Appl Ergon

Human Factors and Ergonomics Laboratory, Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea. Electronic address:

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Industrial exoskeletons are developed to relieve workers' physical demands in the workplace and to alleviate ergonomic issues associated with work-related musculoskeletal disorders. As a safe and economical alternative to empirical/experimental methods, modelling is considered as a powerful tool for design and evaluation of industrial exoskeletons. This systematic review aims to provide a comprehensive understanding of the current literature on the design and evaluation of industrial exoskeletons through modelling. A systematic study was conducted by general keyword searches of five electronic databases over the last two decades (2003-2022). Out of the 701 records initially retrieved, 33 eligible articles were included and analyzed in the final review, presenting a variety of model inputs, model development, and model outputs used in the modelling. This systematic review study revealed that existing modelling methods can evaluate the biomechanical and physiological effects of industrial exoskeletons and provide some design parameters. However, the modelling method is currently unable to cover some of the main evaluation metrics supported by experimental assessments, such as task performance, user experience/discomfort, change in metabolic costs etc. Standard guidelines for model construction and implementation, as well as validation of human-exoskeleton interactions, remain to be established.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apergo.2023.104100DOI Listing

Publication Analysis

Top Keywords

industrial exoskeletons
20
design evaluation
12
evaluation industrial
12
systematic review
12
exoskeletons systematic
8
modelling systematic
8
modelling
6
industrial
5
exoskeletons
5
modelling design
4

Similar Publications