A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A nystagmus extraction system using artificial intelligence for video-nystagmography. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Benign paroxysmal positional vertigo (BPPV), the most common vestibular disorder, is diagnosed by an examiner changing the posture of the examinee and inducing nystagmus. Among the diagnostic methods used to observe nystagmus, video-nystagmography has been widely used recently because it is non-invasive. A specialist with professional knowledge and training in vertigo diagnosis is needed to diagnose BPPV accurately, but the ratio of vertigo patients to specialists is too high, thus necessitating the need for automated diagnosis of BPPV. In this paper, a convolutional neural network-based nystagmus extraction system, ANyEye, optimized for video-nystagmography data is proposed. A pupil was segmented to track the exact pupil trajectory from real-world data obtained during field inspection. A deep convolutional neural network model was trained with the new video-nystagmography dataset for the pupil segmentation task, and a compensation algorithm was designed to correct pupil position. In addition, a slippage detection algorithm based on moving averages was designed to eliminate the motion artifacts induced by goggle slippage. ANyEye outperformed other eye-tracking methods including learning and non-learning-based algorithms with five-pixel error detection rate of 91.26%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366077PMC
http://dx.doi.org/10.1038/s41598-023-39104-7DOI Listing

Publication Analysis

Top Keywords

nystagmus extraction
8
extraction system
8
convolutional neural
8
nystagmus
4
system artificial
4
artificial intelligence
4
video-nystagmography
4
intelligence video-nystagmography
4
video-nystagmography benign
4
benign paroxysmal
4

Similar Publications