A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering Interface Defects and Interdiffusion at the Degenerate Conductive InO/AlO Interface for Stable Electrodes in a Saline Solution. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A low-temperature AlO deposition process provides a simplified method to form a conductive two-dimensional electron gas (2DEG) at the metal oxide/AlO heterointerface. However, the impact of key factors of the interface defects and cation interdiffusion on the interface is still not well understood. Furthermore, there is still a blank space in terms of applications that go beyond the understanding of the interface's electrical conductivity. In this work, we carried out a systematic experimental study by oxygen plasma pretreatment and thermal annealing post-treatment to study the impact of interface defects and cation interdiffusion at the InO/AlO interface on the electrical conductance, respectively. Combining the trends in electrical conductance with the structural characteristics, we found that building a sharp interface with a high concentration of interface defects provides a reliable approach to producing such a conductive interface. After applying this conductive interface as electrodes for fabricating a field-effect transistor (FET) device, we found that this interface electrode exhibited ultrastability in phosphate-buffered saline (PBS), a commonly used biological saline solution. This study provides new insights into the formation of conductive 2DEGs at metal oxide/AlO interfaces and lays the foundation for further applications as electrodes in bioelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c03603DOI Listing

Publication Analysis

Top Keywords

interface defects
16
interface
10
ino/alo interface
8
saline solution
8
metal oxide/alo
8
defects cation
8
cation interdiffusion
8
electrical conductance
8
conductive interface
8
conductive
5

Similar Publications