Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Dynamic preservation methods such as normothermic, subnormothermic, and hypothermic machine perfusion circuits have emerged as viable alternatives to conventional static cold storage. These organ perfusion technologies serve as preservation methods and enable organ assessment, reconditioning, and repair before transplantation. Gene therapy is a novel strategy with the potential to transform the field of graft optimization and treatment. Thereby specific pathways involved in the transplantation process can be targeted and modified. This review aims to provide an overview of gene delivery methods during ex vivo machine perfusion of kidney and liver grafts. Recent literature on state-of-the-art gene therapy approaches during ex situ organ preservation, especially with respect to ischemia-reperfusion injury, as well as acute and chronic graft rejection have been analyzed. Additionally, potential challenges that could affect further refinement of this therapeutic modality are outlined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878468 | PMC |
http://dx.doi.org/10.1097/TP.0000000000004738 | DOI Listing |