Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: This study aimed to assess the technical feasibility, the impact on image quality, and the acquisition time (TA) of a new deep-learning-based reconstruction algorithm in diffusion weighted imaging (DWI) of breast magnetic resonance imaging (MRI).
Methods: Retrospective analysis of 55 female patients who underwent breast DWI at 1.5 T. Raw data were reconstructed using a deep-learning (DL) reconstruction algorithm on a subset of the acquired averages, therefore a reduction of TA. Clinically used standard DWI sequence (DWI) and the DL-reconstructed images (DWI) were compared. Two radiologists rated the image quality of b800 and ADC images, using a Likert-scale from 1 to 5 with 5 being considered perfect image quality. Signal intensities were measured by placing a region of interest (ROI) at the same position in both sequences.
Results: TA was reduced by 40 % in DWI, compared to DWI, DWI improved noise and sharpness while maintaining contrast, the level of artifacts, and diagnostic confidence. There were no differences regarding the signal intensity values of the apparent diffusion coefficient (ADC), (p = 0.955), b50-values (p = 0.070) and b800-values (p = 0.415) comparing standard and DL-imaging. Lesion assessment showed no differences regarding the number of lesions in ADC and DWI (both p = 1.000) and regarding the lesion diameter in DWI (p = 0.961;0.972) and ADC (p = 0.961;0.972).
Conclusions: The novel deep-learning-based reconstruction algorithm significantly reduces TA in breast DWI, while improving sharpness, reducing noise, and maintaining a comparable level of image quality, artifacts, contrast, and diagnostic confidence. DWI does not influence the quantifiable parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2023.110948 | DOI Listing |