A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multiple instance ensembling for paranasal anomaly classification in the maxillary sinus. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time. These challenges necessitate the need for further research and development in this area.

Methods: We investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary sinuses (MS) and MS with polyps or cysts. The task of accurately localizing the relevant MS volume within larger head and neck Magnetic Resonance Imaging (MRI) scans can be difficult, but we develop a strategy which includes the use of a novel sampling technique that not only effectively localizes the relevant MS volume, but also increases the size of the training dataset and improves classification results. Additionally, we employ a Multiple Instance Ensembling (MIE) prediction method to further boost classification performance.

Results: With sampling and MIE, we observe that there is consistent improvement in classification performance of all 3D ResNet and 3D DenseNet architecture with an average AUPRC percentage increase of 21.86 ± 11.92% and 4.27 ± 5.04% by sampling and 28.86 ± 12.80% and 9.85 ± 4.02% by sampling and MIE, respectively.

Conclusion: Sampling and MIE can be effective techniques to improve the generalizability of CNNs for paranasal anomaly classification. We demonstrate the feasibility of classifying anomalies in the MS. We propose a data enlarging strategy through sampling alongside a novel MIE strategy that proves to be beneficial for paranasal anomaly classification in the MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838850PMC
http://dx.doi.org/10.1007/s11548-023-02990-3DOI Listing

Publication Analysis

Top Keywords

paranasal anomaly
16
anomaly classification
16
sampling mie
12
multiple instance
8
instance ensembling
8
convolutional neural
8
relevant volume
8
classification
7
sampling
6
paranasal
5

Similar Publications