Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Diastolic dysfunction is central to diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy (HCM). However, therapies that improve cardiac relaxation are scarce, partly due to a limited understanding of modulators of cardiomyocyte relaxation. We hypothesized that cardiac relaxation is regulated by multiple unidentified proteins and that dysregulation of kinases contributes to impaired relaxation in patients with HCM.

Methods: We optimized and increased the throughput of unloaded shortening measurements and screened a kinase inhibitor library in isolated adult cardiomyocytes from wild-type mice. One hundred fifty-seven kinase inhibitors were screened. To assess which kinases are dysregulated in patients with HCM and could contribute to impaired relaxation, we performed a tyrosine and global phosphoproteomics screen and integrative inferred kinase activity analysis using HCM patient myocardium. Identified hits from these 2 data sets were validated in cardiomyocytes from a homozygous HCM mouse model.

Results: Screening of 157 kinase inhibitors in wild-type (N=33) cardiomyocytes (n=24 563) resulted in the identification of 17 positive inotropes and 21 positive lusitropes, almost all of them novel. The positive lusitropes formed 3 clusters: cell cycle, EGFR (epidermal growth factor receptor)/IGF1R (insulin-like growth factor 1 receptor), and a small Akt (α-serine/threonine protein kinase) signaling cluster. By performing phosphoproteomic profiling of HCM patient myocardium (N=24 HCM and N=8 donors), we demonstrated increased activation of 6 of 8 proteins from the EGFR/IGFR1 cluster in HCM. We validated compounds from this cluster in mouse HCM (N=12) cardiomyocytes (n=2023). Three compounds from this cluster were able to improve relaxation in HCM cardiomyocytes.

Conclusions: We showed the feasibility of screening for functional modulators of cardiomyocyte relaxation and contraction, parameters that we observed to be modulated by kinases involved in EGFR/IGF1R, Akt, cell cycle signaling, and FoxO (forkhead box class O) signaling, respectively. Integrating the screening data with phosphoproteomics analysis in HCM patient tissue indicated that inhibition of EGFR/IGF1R signaling is a promising target for treating impaired relaxation in HCM.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.122.322133DOI Listing

Publication Analysis

Top Keywords

impaired relaxation
12
hcm patient
12
hcm
11
relaxation
9
egfr/igf1r signaling
8
hypertrophic cardiomyopathy
8
cardiac relaxation
8
modulators cardiomyocyte
8
cardiomyocyte relaxation
8
kinase inhibitors
8

Similar Publications

Cystathionine γ-lyase (CSE) produces hydrogen sulfide (HS), a vasodilator critical for vascular function. While its systemic effects are well-documented, its role in erectile physiology remains unclear. This study investigated the impact of CSE deletion on vascular and erectile tissue reactivity.

View Article and Find Full Text PDF

Arterial Stiffness in HFpEF: From Clinical Insight to Bedside Action.

Cardiol Rev

September 2025

From the Department of General Medicine, J.S.S. Medical College, JSS Academy of Higher Education and Research, Mysuru, India.

Heart failure with preserved ejection fraction (HFpEF) accounts for nearly half of all heart failure cases and is increasing in prevalence due to aging populations and comorbidities such as hypertension and diabetes. While echocardiography remains the diagnostic cornerstone, many patients with preserved ejection fraction present with nonspecific symptoms and ambiguous diastolic indices, leading to diagnostic uncertainty and therapeutic delay. Arterial stiffness-quantified by pulse wave velocity, augmentation index, and cardio-ankle vascular index)-is emerging as a key contributor to HFpEF pathophysiology.

View Article and Find Full Text PDF

Introduction: Absence of language development is a condition encountered across a large range of neurodevelopmental disorders, including a significant proportion of children with autism spectrum disorder. The neurobiological underpinnings of non-verbal ASD (nvASD) remain poorly understood.

Methods: This study employed multimodal MRI to investigate white matter (WM) microstructural abnormalities in nvASD, focusing on language-related pathways.

View Article and Find Full Text PDF

Cancer cachexia is a highly debilitating clinical syndrome of involuntary body mass loss featuring profound muscle wasting leading to high mortality. Notably, cardiac wasting is prominent in cancer patients and cancer survivors. Cachexia studies present significant challenges due to the absence of human models and mainly short-term animal studies.

View Article and Find Full Text PDF

Background And Objectives: Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular health, and its signature in familial frontotemporal dementia (FTD) remains unknown. The primary aim was to investigate CVR in genetic FTD using an fMRI index of vascular contractility termed resting-state fluctuation amplitudes (RSFAs) and to assess whether RSFA differences are moderated by age. A secondary aim was to study the relationship between RSFA and cognition.

View Article and Find Full Text PDF