Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A reliable, but cost-effective generation of single-photon states is key for practical quantum communication systems. For real-world deployment, waveguide sources offer optimum compatibility with fiber networks and can be embedded in hybrid integrated modules. Here, we present what we believe to be the first chip-size fully integrated fiber-coupled heralded single photon source (HSPS) module based on a hybrid integration of a nonlinear lithium niobate waveguide into a polymer board. Photon pairs at 810 nm (signal) and 1550 nm (idler) are generated via parametric down-conversion pumped at 532 nm in the LiNbO waveguide. The pairs are split in the polymer board and routed to separate output ports. The module has a size of (2 × 1) cm and is fully fiber-coupled with one pump input fiber and two output fibers. We measure a heralded second-order correlation function of (2)=0.05 with a heralding efficiency of =3.5 at low pump powers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.487581 | DOI Listing |