98%
921
2 minutes
20
Climate change has been associated with both latitudinal and elevational shifts in species' ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species' traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species' range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species' ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359363 | PMC |
http://dx.doi.org/10.1038/s41467-023-39093-1 | DOI Listing |
Int J Biometeorol
September 2025
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
Plant viewing activities, which encompass the enjoyment of seasonal plant phenomena such as flowering and autumn leaf coloration, have become popular worldwide. Plant viewing activities are increasingly challenged by climate change, as key components like plant phenology and climate comfort are highly sensitive to global warming. However, few studies have explored the impact of climate change on viewing activities, particularly from an integrated, multi-factor perspective.
View Article and Find Full Text PDFData Brief
October 2025
INRAE, US ODR, Castanet-Tolosan F-31326, France.
Lots of agricultural or environmental studies, researches, policy evaluations are based on Land Parcel Information System (LPIS), combined with other pedo-climatic or agro-environmental data. This is the case for example for different kinds of models, as crop models which have been used widely in France to assess ecosystemic services or carbon storage, agent-based models for watershed analyses or for models assessing erosion risks. However, integration of pedo-climatic and agro-environmental data at a high-resolution level remains challenging.
View Article and Find Full Text PDFiScience
September 2025
Department of Land, Environment, Agriculture and Forestry, University of Padova, Padua, Italy.
Addressing the challenge of feeding a growing global population while mitigating the damages of weather extremes and adapting to climate change requires coordinated efforts across science, policy, and agriculture. Drawing inspiration from recent European Union agricultural and environmental policy reforms, we examine the barriers between scientific advancements, farm-scale applications, and the implementation of agricultural policies. We propose a generalized framework to bridge communication gaps among scientists, policymakers, and farmers.
View Article and Find Full Text PDFFungal Biol
October 2025
Faculty of Biology and Nature Protection, University of Rzeszów, Zelwerowicza 4, 35 - 601, Rzeszów, Poland. Electronic address:
The qualitative and quantitative composition of airborne fungal spores results from the interaction of fungal biology, environmental factors, particularly climate, weather conditions, vegetation, land cover and human activity. Continuous aeromycological monitoring is rarely conducted due to the challenges associated with identifying the abundance of spores present in the air. In southeastern Poland such studies have been conducted only occasionally.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec
Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.
View Article and Find Full Text PDF