98%
921
2 minutes
20
With the discovery and development of somatic cell nuclear transfer, cell fusion, and induced pluripotent stem cells, cell transdifferentiation research has presented unique advantages and stimulated a heated discussion worldwide. Cell transdifferentiation is a phenomenon by which a cell changes its lineage and acquires the phenotype of other cell types when exposed to certain conditions. Indeed, many adult stem cells and differentiated cells were reported to change their phenotype and transform into other lineages. This article reviews the differentiation of stem cells and classification of transdifferentiation, as well as the advantages, challenges, and prospects of cell transdifferentiation. This review discusses new research directions and the main challenges in the use of transdifferentiation in human cells and molecular replacement therapy. Overall, such knowledge is expected to provide a deep understanding of cell fate and regulation, which can change through differentiation, dedifferentiation, and transdifferentiation, with multiple applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cell.2023.0015 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).
View Article and Find Full Text PDFCrit Rev Immunol
September 2025
Department of General Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China.
Objective: This study aimed to probe the role of Shenling Baizhu powder (SLBZP) in inhibiting breast cancer (BC) lung metastasis, focusing on epithelial-to-mesenchymal transition (EMT) and ferroptosis.
Methods: BC 4T1 cells were treated with low (3.13 µg/mL) and high (12.
Proc Natl Acad Sci U S A
September 2025
Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical Univer
Ocular fibrosis, a severe consequence of excessive retinal wound healing, can lead to vision loss following retinal injury. Proliferative vitreoretinopathy (PVR), a common form of ocular fibrosis, is a major cause of blindness, characterized by the formation of extensive fibrous proliferative membranes. Understanding the cellular origins of PVR-associated fibroblasts (PAFs) is essential to decipher the mechanisms of ocular wound healing.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Obstetrics and Gynecology, Affiliated Hospital of Putian University;
Long non-coding RNA MALAT1 regulates epithelial-mesenchymal transition (EMT) and metastasis in epithelial ovarian cancer (EOC) through a competing endogenous RNA (ceRNA) mechanism involving miRNA modulation. This study aimed to elucidate the molecular pathway by which MALAT1 influences EMT and metastatic behavior via interaction with miR-200c-3p and SNAI2. MALAT1 expression was genetically manipulated in the EOC cell line SK-OV-3 by either overexpression or knockdown.
View Article and Find Full Text PDFOncol Res
September 2025
Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
Background: Colorectal cancer (CRC) is common and deadly, often leading to metastasis, challenging treatment, and poor outcomes. Understanding its molecular basis is crucial for developing effective therapies.
Aims: This study aimed to investigate the role of Myosin Heavy Chain 11 (MYH11) in CRC progression, especially its effects on epithelial-mesenchymal transition (EMT) and cell behavior, and to explore its potential regulation by the EMT transcription factor zinc finger E-box binding homeobox 1 (ZEB1).