A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Theoretical Study of the Molecular Passivation Effect of Lewis Base/Acid on Lead-Free Tin Perovskite Surface Defects. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extensive research has been recently conducted to improve the power conversion efficiency (PCE) of perovskite solar cells. However, the charge carriers are easily trapped by the defect sites located at the interface between the perovskite layer and the electrode, which decreases the PCE. To reduce such defect sites, the passivation technique is frequently employed to coat small molecules on the perovskite surface during the manufacturing process. To clarify the passivation mechanism from a molecular viewpoint, we performed density functional theory calculations to target Pb-free Sn perovskites (CHNHSnI). We investigated the passivation effect of Lewis base/acid molecules, such as ethylene diamine (EDA) and iodopentafluorobenzene (IPFB), and discussed behaviors of the defect levels within the bandgap as they have strong negative impacts on the PCE. The adsorption of EDA/IPFB on the Sn perovskite surface can remove the defect levels from the bandgap. Furthermore, we discuss the importance of interactions with molecular orbitals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c01450DOI Listing

Publication Analysis

Top Keywords

perovskite surface
12
passivation lewis
8
lewis base/acid
8
defect sites
8
defect levels
8
levels bandgap
8
perovskite
5
theoretical study
4
study molecular
4
passivation
4

Similar Publications