Low-dose perinatal supplementation with Enterococcus faecalis increases concentrations of short-chain fatty acids in the offspring but does not protect against allergic asthma.

Int Immunol

Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin 12203, Germany.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Childhood allergic asthma is associated with a dysbiotic gut microbiome in early life, and maternal perinatal treatment with probiotics is a potential way alter the infant microbiome, which may improve asthma outcomes. This study used a mouse model to examine the effect of maternal supplementation with the probiotic Enterococcus faecalis on faecal short-chain fatty acid (SCFA) concentrations and asthma risk in the offspring. Pregnant/lactating mice were treated daily, from gestation day 6 to postnatal day 21, with an oral suspension of 106, 107 or 108 colony-forming units of a live preparation of the probiotic E. faecalis (Symbioflor®1). At weaning, offspring were subjected to an ovalbumin-induced experimental asthma protocol. Faeces were collected from the mothers and offspring at several different time points to determine SCFA concentrations. It was found that maternal supplementation with E. faecalis did not alter litter size, sex ratio or offspring weight, and was associated with an increase in SCFAs in offspring faeces at weaning and after allergy induction. However, allergic offspring from E. faecalis supplemented mothers showed no difference in asthma severity when compared with allergic offspring from control mothers. In conclusion, although maternal perinatal supplementation with low-dose E. faecalis was associated with increased faecal SCFAs in the offspring, it did not protect against offspring asthma. This is may be because SCFA concentrations were not increased to an immunoprotective level. We recommend that future studies concentrate on probiotic supplementation in high-risk cases, for instance, to repair gut dysbiosis resulting from antibiotic use in pregnant mothers or their infants.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxad025DOI Listing

Publication Analysis

Top Keywords

scfa concentrations
12
offspring
10
perinatal supplementation
8
enterococcus faecalis
8
short-chain fatty
8
offspring protect
8
allergic asthma
8
maternal perinatal
8
maternal supplementation
8
scfas offspring
8

Similar Publications

Sclareol mitigates steatosis, inflammation, and fibrosis through the regulation of AMPK/SREBP1/NF-κB/TGF-β pathways in metabolic dysfunction-associated steatohepatitis.

Biomed Pharmacother

September 2025

Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany. Electronic address:

Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of metabolic dysfunction-associated steatotic liver disease (MASLD). The increasing burden of MASH and its associated complications is challenging to cure. Our study aims to investigate the therapeutic potential of sclareol in MASH pathogenesis.

View Article and Find Full Text PDF

People with obesity tend to have altered functional connectivity of reward-related areas in the brain, contributing to overeating and weight gain. The gut-brain axis may function as a mediating factor, with gut-derived short-chain fatty acids (SCFAs) as possible intermediates in the relationship between microbiota and functional connectivity. We investigated the influence of SCFA turnover on resting state functional connectivity in healthy individuals with extremely high and extremely low levels of intestinal SCFA turnover.

View Article and Find Full Text PDF

Background: We aimed to elucidate the cystic fibrosis (CF) microbiota composition (shotgun metagenomics) and functionality (short-chain fatty acids, SCFAs).

Methods: Fecal and sputum samples were recruited from 39 clinically stable CF subjects.

Results: Bacillota and Pseudomonadota were dominant in both gut and lung compartments, whereas Ascomycota were the most abundant fungi in feces, and Basidiomycota, especially Malassezia globosa, in sputum.

View Article and Find Full Text PDF

Background: Despite escalating global pollution from microplastics (MPs) and the concurrent surge in high-fat food consumption, the health impacts of MP exposure on individuals under different dietary patterns remain poorly understood.

Methods: This study investigated the differential effects of environmentally relevant concentrations of polystyrene microplastics (5 μm, 8 mg/kg) on gut barrier function in mice fed either a normal chow diet (CD) or a high-fat diet (HFD).

Results: Key findings revealed that, in HFD-fed mice, MP exposure significantly reduced ( < 0.

View Article and Find Full Text PDF

Background: Alcohol use disorder (AUD) is linked to changes in the function and composition of the human gut microbiome (GM). The GM affects inflammation by producing anti-inflammatory molecules such as short-chain fatty acids (SCFA), in particular butyrate, which are linked to appetite regulation, a mechanism involved in alcohol craving. This study investigates changes in GM composition and functional capacity to produce SCFA during alcohol withdrawal and their link to inflammation and craving.

View Article and Find Full Text PDF