A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nicotine-magnesium aluminum silicate complexes processed by blending: Characterization for usage as drug carriers in mucoadhesive buccal discs. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Complexation of nicotine (NCT) and magnesium aluminum silicate (MAS) has been formed in the dispersions that required multiple preparation steps. In this study, physical blending was used to produce NCT-MAS complexes. NCT, a free-base liquid state form, was adsorbed onto the MAS granules, where the diffusion and intercalation of NCT molecules into the MAS silicate layers occurred. These processes required a minimum of the 7-d-resting period to reach NCT complete distribution. FTIR, XRD, and Si NMR suggest that NCT could interact with MAS via hydrogen bonding, water bridging, and ionic electrostatic force. The 12 % NCT-MAS complexes enabled a sustained release of NCT, after a 2-min burst, in pH 6 phosphate buffer through a particle diffusion-controlled mechanism. Buccal discs formulated with NCT-MAS complexes and sodium alginate (SA) as drug carriers and matrix former could control NCT released through drug diffusion and swelling-controlled mechanisms. NCT release and membrane permeation increased with increasing NCT-MAS complexes or decreasing SA concentration. All NCT-MAS-containing buccal discs exhibited mucoadhesive properties related to the swelling characteristics of SA and MAS. Conclusively, NCT-MAS complexes can be produced through an uncomplicated single-step blending process, and the complexes obtained presented a potential to serve as drug carriers in buccal matrix formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123243DOI Listing

Publication Analysis

Top Keywords

nct-mas complexes
20
drug carriers
12
buccal discs
12
aluminum silicate
8
nct
8
complexes
7
mas
5
nct-mas
5
nicotine-magnesium aluminum
4
silicate complexes
4

Similar Publications