98%
921
2 minutes
20
Excessive anxiety is highly prevalent during childhood and adolescence, with detrimental effects on somatic and mental health, and quality of life. Although structural abnormalities in the brain have been found in people with anxiety disorders, whether anxiety affects the brain development of children and adolescents remains unknown. Here, we applied a multivariate approach to two single-site MRI datasets consisting of 733 and 775 participants aged 5-18 years. Using linear support vector regression and cross-validation, brain age is estimated by predicting the chronological age from the features that combine cortical thickness and surface area of 68 brain regions. We found that gray matter can predict the chronological age of children and adolescents with a low mean absolute error. Compared to specific brain network, the whole structural brain measures predicted brain age better. Importantly, adolescents with higher generalized anxiety and those with lower separation anxiety showed lower brain age, indicating a slow development of brain structures. The relationship between anxiety and brain age of youths could also be found in parent-reported separation anxiety. The findings highlight differential effects of different anxiety types on brain structural development and suggest that different types of anxiety during childhood and adolescence should be treated differently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2023.07.056 | DOI Listing |
Neurology
October 2025
Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, WA.
Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.
View Article and Find Full Text PDFAm J Speech Lang Pathol
September 2025
School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.
Purpose: The aim of this study was to reach consensus among researchers, clinicians, and service managers on the most important outcomes of cognitive-communication treatments for children and adolescents (ages 5-18 years) with traumatic brain injury, in the postacute stage of rehabilitation and beyond.
Method: This is an international three-round e-Delphi study. In Round 1, participants answered three open-ended questions, generating important treatment outcomes at three stages of development (5-11, 12-15, and > 15-18 years).
Background: At present, existing risk scores together with traditional biomarkers such as troponin and brain natriuretic peptide (BNP) are still unable to accurately predict cancer therapy-related cardiac dysfunction (CTRCD). MicroRNAs (miRNAs) have emerged as promising biomarkers for improved identification of high-risk patients; however, limited studies have been performed in patients with HER2-positive breast cancer.
Objectives: To investigate the predictive potential of six serum-derived circulating miRNAs for CTRCD occurrence in patients with early-stage HER2-positive breast cancer receiving trastuzumab (TTZ).
Background Uninvestigated dyspepsia (UD) and chronic constipation (CC) are common disorders of gut-brain interaction (DGBI). However, limited research has assessed their risk factors in young adults, particularly the influence of family history. This study investigated the associated factors for UD and CC, focusing on family history among Japanese university students.
View Article and Find Full Text PDFJAMA Neurol
September 2025
Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.
View Article and Find Full Text PDF