Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Luminescent gold nanoclusters (GNCs) are a class of attractive quantum-sized nanomaterials bridging the gap between organogold complexes and gold nanocrystals. They typically have a core-shell structure consisting of a Au(I)-organoligand shell-encapsulated few-atom Au(0) core. Their luminescent properties are greatly affected by their Au(I)-organoligand shell, which also supports the aggregation-induced emission (AIE) effect. However, so far, the luminescent Au nanoclusters encapsulated with the organoligands containing phosphoryl moiety have rarely been reported, not to mention their AIE. In this study, coenzyme A (CoA), an adenosine diphosphate (ADP) analogue that is composed of a bulky 5-phosphoribonucleotide adenosine moiety connected to a long branch of vitamin B5 (pantetheine) via a diphosphate ester linkage and ubiquitous in all living organisms, has been used to synthesize phosphorescent GNCs for the first time. Interestingly, the synthesized phosphorescent CoA@GNCs could be further induced to generate AIE via the PO and Zr interactions, and the observed AIE was found to be highly specific to Zr ions. In addition, the enhanced phosphorescent emission could be quickly turned down by dipicolinic acid (DPA), a universal and specific component and also a biomarker of bacterial spores. Therefore, a Zr-CoA@GNCs-based DPA biosensor for quick, facile, and highly sensitive detection of possible spore contamination has been developed, showing a linear concentration range from 0.5 to 20 μM with a limit of detection of 10 nM. This study has demonstrated a promising future for various organic molecules containing phosphoryl moiety for the preparation of AIE-active metal nanoclusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c02209 | DOI Listing |