Electron-counting in MicroED.

bioRxiv

Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The combination of high sensitivity and rapid readout makes it possible for electron-counting detectors to record cryogenic electron microscopy data faster and more accurately without increasing the exposure. This is especially useful for MicroED of macromolecular crystals where the strength of the diffracted signal at high resolution is comparable to the surrounding background. The ability to decrease the exposure also alleviates concerns about radiation damage which limits the information that can be recovered from a diffraction measurement. However, the dynamic range of electron-counting detectors requires careful data collection to avoid errors from coincidence loss. Nevertheless, these detectors are increasingly deployed in cryo-EM facilities, and several have been successfully used for MicroED. Provided coincidence loss can be minimized, electron-counting detectors bring high potential rewards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327187PMC
http://dx.doi.org/10.1101/2023.06.29.547123DOI Listing

Publication Analysis

Top Keywords

electron-counting detectors
12
coincidence loss
8
electron-counting
4
electron-counting microed
4
microed combination
4
combination high
4
high sensitivity
4
sensitivity rapid
4
rapid readout
4
readout electron-counting
4

Similar Publications

Auto-thresholding for Unbiased Electron Counting.

Microscopy (Oxf)

May 2025

School of Physics, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland.

As interest in fast real-space frame-rate scanning transmission electron microscopy for both structural and functional characterisation of materials increases, so does the need for precise and fast electron detection techniques. Electron counting, with monolithic, segmented, or 4D detectors, has been explored for many years. Recent studies have shown that a retrofittable signal digitiser for a monolithic or segmented detector can be a sustainable and accessible way to enhance the performance of existing detectors, especially for imaging at fast scan speeds.

View Article and Find Full Text PDF

Fast event-based electron counting for small-molecule structure determination by MicroED.

Acta Crystallogr C Struct Chem

March 2025

Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.

Electron counting helped realize the resolution revolution in single-particle cryoEM and is now accelerating the determination of MicroED structures. Its advantages are best demonstrated by new direct electron detectors capable of fast (kilohertz) event-based electron counting (EBEC). This strategy minimizes the inaccuracies introduced by coincidence loss (CL) and promises rapid determination of accurate structures.

View Article and Find Full Text PDF

Accounting for electron-beam-induced warping of molecular nanocrystals in MicroED structure determination.

IUCrJ

March 2025

Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, 611 Charles E. Young Dr East, Los Angeles, CA 90095, USA.

High-energy electrons induce sample damage and motion at the nanoscale to fundamentally limit the determination of molecular structures by electron diffraction. Using a fast event-based electron counting (EBEC) detector, we characterize beam-induced, dynamic, molecular crystal lattice reorientations (BIRs). These changes are sufficiently large to bring reciprocal lattice points entirely in or out of intersection with the sphere of reflection, occur as early events in the decay of diffracted signal due to radiolytic damage, and coincide with beam-induced migrations of crystal bend contours within the same fluence regime and at the same illuminated location on a crystal.

View Article and Find Full Text PDF
Article Synopsis
  • - The 4D Camera is a high-speed sensor designed for electron microscopy, capable of scanning at 87,000 Hz and generating data at approximately 480 Gbit/s, which is processed by specialized computers handling large datasets between 10-700 GB in size.
  • - It features a back illuminated detector that can detect single electron events at voltages ranging from 30 to 300 kV, enabling efficient electron counting that compresses data size significantly (by 10-300 times).
  • - The camera allows for rapid analysis through open-source processing algorithms, facilitating complex scanning diffraction experiments typically done in scanning transmission electron microscopy.
View Article and Find Full Text PDF

High resolution information is important for accurate structure modelling. However, this level of detail is typically difficult to attain in macromolecular crystallography because the diffracted intensities rapidly fade with increasing resolution. The problem cannot be circumvented by increasing the fluence as this leads to detrimental radiation damage.

View Article and Find Full Text PDF