A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting Glaucoma Progression to Surgery with Artificial Intelligence Survival Models. | LitMetric

Predicting Glaucoma Progression to Surgery with Artificial Intelligence Survival Models.

Ophthalmol Sci

Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Prior artificial intelligence (AI) models for predicting glaucoma progression have used traditional classifiers that do not consider the longitudinal nature of patients' follow-up. In this study, we developed survival-based AI models for predicting glaucoma patients' progression to surgery, comparing performance of regression-, tree-, and deep learning-based approaches.

Design: Retrospective observational study.

Subjects: Patients with glaucoma seen at a single academic center from 2008 to 2020 identified from electronic health records (EHRs).

Methods: From the EHRs, we identified 361 baseline features, including demographics, eye examinations, diagnoses, and medications. We trained AI survival models to predict patients' progression to glaucoma surgery using the following: (1) a penalized Cox proportional hazards (CPH) model with principal component analysis (PCA); (2) random survival forests (RSFs); (3) gradient-boosting survival (GBS); and (4) a deep learning model (DeepSurv). The concordance index (C-index) and mean cumulative/dynamic area under the curve (mean AUC) were used to evaluate model performance on a held-out test set. Explainability was investigated using Shapley values for feature importance and visualization of model-predicted cumulative hazard curves for patients with different treatment trajectories.

Main Outcome Measures: Progression to glaucoma surgery.

Results: Of the 4512 patients with glaucoma, 748 underwent glaucoma surgery, with a median follow-up of 1038 days. The DeepSurv model performed best overall (C-index, 0.775; mean AUC, 0.802) among the models studied in this article (CPH with PCA: C-index, 0.745; mean AUC, 0.780; RSF: C-index, 0.766; mean AUC, 0.804; GBS: C-index, 0.764; mean AUC, 0.791). Predicted cumulative hazard curves demonstrate how models could distinguish between patient who underwent early surgery and patients who underwent surgery after > 3000 days of follow-up or no surgery.

Conclusions: Artificial intelligence survival models can predict progression to glaucoma surgery using structured data from EHRs. Tree-based and deep learning-based models performed better at predicting glaucoma progression to surgery than the CPH regression model, potentially because of their better suitability for high-dimensional data sets. Future work predicting ophthalmic outcomes should consider using tree-based and deep learning-based survival AI models. Additional research is needed to develop and evaluate more sophisticated deep learning survival models that can incorporate clinical notes or imaging.

Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320266PMC
http://dx.doi.org/10.1016/j.xops.2023.100336DOI Listing

Publication Analysis

Top Keywords

survival models
20
predicting glaucoma
16
glaucoma progression
12
progression surgery
12
artificial intelligence
12
deep learning-based
12
progression glaucoma
12
glaucoma surgery
12
models
10
glaucoma
9

Similar Publications