Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Ultraviolet (UV) B irradiation induces protein modification, especially the conformational rearrangement of proteins, and is therefore promising as a non-thermal and non-chemical functionalization technique. Nevertheless, UVB irradiation introduces radicals and oxidizes side chains resulting in the loss of food quality. Thus, assessing the UVB irradiation-based functionalization of β-lactoglobulin (BLG) versus its oxidative degradation is of interest. UVB irradiation of up to 8 h was successfully applied to loosen the rigid folding of BLG and increase its flexibility. Thereby, the cysteine at position 121 and hydrophobic regions became surface-exposed as indicated by the increase in accessible thiol groups and increased surface hydrophobicity. Furthermore, we demonstrated the cleavage of the "outer" disulfide bond C-C by LC-MS/MS after tryptic digestion of BLG. The 2-h-irradiated BLG showed adequate conformational rearrangement for protein functionalization while being minimally oxidized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.136698 | DOI Listing |