98%
921
2 minutes
20
Objective: Gingival tissue regeneration is associated with several challenges. Tissue engineering regenerates the different components of the tissues, providing three major elements: living cells, appropriate scaffolds, and tissue-inducing substances. This study aimed to regenerate the gingival connective tissue in vitro, using human gingival fibroblasts cultured in three-dimensional fibrin gel scaffolds.
Design: Human gingival fibroblasts were seeded in a novel three-dimensional fibrin gel scaffold and maintained in two media types: platelet lysate media (control) and collagen-stimulating media (test). Cellular viability and proliferation were assessed, and the production of collagen and other extracellular matrix components in these constructs was investigated and compared.
Results: Human gingival fibroblasts cultured in three-dimensional cultures were metabolically active and proliferated in both media. Furthermore, histologic sections, scanning electron microscopy, and quantitative polymerase chain reaction confirmed the production of higher levels of collagen and other extracellular matrix fibers in three-dimensional constructs cultured in collagen-stimulating media.
Conclusions: Culturing human gingival fibroblasts in a novel three-dimensional fibrin gel scaffold containing collagen-stimulating media resulted in a tissue-equivalent construct that mimics human gingival connective tissue. The impact of these results should be considered for further investigations, which may help to develop a compatible scaffold for gingival soft tissue regeneration and treatment of mucogingival deformities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2023.105754 | DOI Listing |
Odontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFOdontology
September 2025
Department of Biomaterials, Hamidiye Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Turkey.
This study evaluates the cytotoxicity, apoptosis, and expression of stress-related genes (TP53 and NF-κB) in response to gingiva-colored indirect composite resins used for veneering tooth or implant-supported prostheses or characterization of denture bases. A total of 120 disc-shaped specimens (2 mm thick, 10 mm diameter) gingiva-colored indirect composite resin specimens (Group A: Anaxgum-Anaxdent, Group B: Crealing Paste Gum-Bredent, Group G: Gradia Gum-GC, Group N: SR Nexco GUM-Ivoclar Vivadent) were prepared and divided into four groups (n = 10 per group). Surface wettability was assessed using water contact angle (WCA) measurements.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea.
This study investigated the anti-periodontitis effects of MENP (mixed extracts from multiple natural plants with a certain percentage). Lipopolysaccharide from (LPS-PG) was used to stimulate Raw 264.7 and human gingival fibroblast-1 cells.
View Article and Find Full Text PDFEnviron Int
August 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China. Electronic address:
The oral cavity, the gateway to the digestive system, represents a critical entrance for micro- and nanoplastics (MNPs) to enter the human body. Few studies have assessed the long-term accumulation of MNPs in the oral cavity and their potential harm to resident cells. This study investigated the presence of MNPs in human dental calculus and evaluated the cytotoxic and inflammatory effects of polyethylene (PE) on human gingival fibroblasts (HGFs).
View Article and Find Full Text PDFInt J Radiat Biol
September 2025
Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India.
Purpose: Cancer cells become resistant to radiation therapy (RT) due to radiation-induced adaptive response (RIAR). Studies emphasize the potential of hyper-fractionated RT in improving treatment outcomes for cancer patients, suggesting a paradigm shift to combat radio-resistance while minimizing adverse effects. Though the phenomenon of RIAR has been studied and reported from a radiation protection perspective, its role in clinical-RT remains unclear.
View Article and Find Full Text PDF