Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hydrogen bond formation and deformation are crucial for the structural construction and functional expression of biomolecules. However, direct observation of exchangeable hydrogens, especially for oxygen-bound hydrogens, relevant to hydrogen bonds is challenging for current structural analysis approaches. Using solution-state NMR spectroscopy, this study detected the functionally important exchangeable hydrogens (i.e., Y49-ηOH and Y178-ηOH) involved in the pentagonal hydrogen bond network in the active site of rhodopsin (RxR), which functions as a light-driven proton pump. Moreover, utilization of the original light-irradiation NMR approach allowed us to detect and characterize the late photointermediate state (i.e., O-state) of RxR and revealed that hydrogen bonds relevant to Y49 and Y178 are still maintained during the photointermediate state. In contrast, the hydrogen bond between W75-εNH and D205-γCOO is strengthened and stabilizes the O-state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c02833 | DOI Listing |