Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Multiple sclerosis (MS) is a potentially disabling disease that damages the brain and spinal cord, inducing paralysis of the body. While MS has been known as a T-cell mediated disease, recent attention has been drawn to the involvement of B cells in its pathogenesis. Autoantibodies from B cells are closely related with the damage lesion of central nervous system and worse prognosis. Therefore, regulating the activity of antibody secreting cell could be related with the severity of the MS symptoms.

Methods: Total mouse B cells were stimulated with LPS to induce their differentiation into plasma cells. The differentiation of plasma cells was subsequently analyzed using flow cytometry and quantitative PCR analysis. To establish an experimental autoimmune encephalomyelitis (EAE) mouse model, mice were immunized with MOG/CFA emulsion.

Results: In this study, we found that plasma cell differentiation was accompanied by upregulation of autotaxin, which converts sphingosylphosphorylcholine (SPC) to sphingosine 1-phosphate in response to LPS. We observed that SPC strongly blocked plasma cell differentiation from B cells and antibody production . SPC downregulated LPS-stimulated IRF4 and Blimp 1, which are required for the generation of plasma cells. SPC-induced inhibitory effects on plasma cell differentiation were specifically blocked by VPC23019 (S1PR1/3 antagonist) or TY52159 (S1PR3 antagonist), but not by W146 (S1PR1 antagonist) and JTE013 (S1PR2 antagonist), suggesting a crucial role of S1PR3 but not S1PR1/2 in the process. Administration of SPC against an EAE mouse model significantly attenuated the symptoms of disease, showing decreased demyelinated areas of the spinal cord and decreased numbers of cells infiltrated into the spinal cord. SPC markedly decreased plasma cell generation in the EAE model, and SPC-induced therapeutic effects against EAE were not observed in μMT mice.

Conclusion: Collectively, we demonstrate that SPC strongly inhibits plasma cell differentiation, which is mediated by S1PR3. SPC also elicits therapeutic outcomes against EAE, an experimental model of MS, suggesting SPC as a new material to control MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319473PMC
http://dx.doi.org/10.3389/fimmu.2023.1151511DOI Listing

Publication Analysis

Top Keywords

plasma cell
24
cell differentiation
20
spinal cord
12
plasma cells
12
plasma
9
inhibits plasma
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
cells
8
differentiation plasma
8

Similar Publications

Introduction: Targeted infection imaging is crucial for accurate diagnosis in postpartum women. This project uses 99mTc-labeled cefixime to develop a radiopharmaceutical for detecting, distinguishing, and treating infections and abscesses in women.

Method: Technetium (TcO4-) chelated with cefixime, reduced by stannous chloride, confirmed via thin-layer chromatography.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is a leading risk factor for cardiovascular diseases globally, characterised by the accumulation of lipids and cholesterol in arterial walls, causing vascular narrowing and sclerosis along with chronic inflammation; this leads to increased risk of heart disease and stroke, significantly impacting patients' health. Danxia Tiaoban Decoction (DXTB), a traditional Chinese medicine (TCM) formula, has demonstrated positive clinical effects in treating AS; however, its mechanisms of action remain unclear.

Objective: To explore the potential mechanisms of action of DXTB in treating AS through multi-omics integration and experimental validation.

View Article and Find Full Text PDF

B cells play a critical role in tumor immunity, with their presence associated with improved prognosis in various cancers, including endometrial cancer (EC). However, the nature of the B cell response within the tumor microenvironment (TME) remains incompletely understood. In this study, we conducted single-cell analyses of B cells and CD4+ T cells in the TME of EC.

View Article and Find Full Text PDF

Boosting biocompatibility and minimizing inflammation in electrospun polyvinylidene fluoride (PVDF) cardiac patches through optimized low-pressure plasma treatment.

Biomater Adv

September 2025

Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.

Tailoring surface characteristics is key to guiding scaffold interaction with the biological environment, promoting successful biointegration while minimizing immune responses and inflammation. In cardiac tissue engineering, polyvinylidene fluoride (PVDF) is a material of choice for its intrinsic piezoelectric properties, which can be enhanced through electrospinning, also enabling the fabrication of nanofibrous structures mimicking native tissue. However, the inherent hydrophobicity of PVDF can hinder its integration with biological tissues.

View Article and Find Full Text PDF

Purpose: We investigated whether EML4-ALK fusions and mutations in pre-treatment plasma ctDNA predicted time to treatment discontinuation (TTD) in ALK-positive non-small cell lung cancer (ALK+ NSCLC) patients initiating first-line alectinib and evaluated clinical characteristics influencing TTD.

Materials & Methods: 42 patients from five Danish public oncology departments with previously untreated, metastatic ALK+ NSCLC were included in the study. All patients received alectinib, a second-generation ALK inhibitor, as their first-line treatment.

View Article and Find Full Text PDF