A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tracking online low-rank approximations of higher-order incomplete streaming tensors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we propose two new provable algorithms for tracking online low-rank approximations of high-order streaming tensors with missing data. The first algorithm, dubbed adaptive Tucker decomposition (ATD), minimizes a weighted recursive least-squares cost function to obtain the tensor factors and the core tensor in an efficient way, thanks to an alternating minimization framework and a randomized sketching technique. Under the canonical polyadic (CP) model, the second algorithm, called ACP, is developed as a variant of ATD when the core tensor is imposed to be identity. Both algorithms are low-complexity tensor trackers that have fast convergence and low memory storage requirements. A unified convergence analysis is presented for ATD and ACP to justify their performance. Experiments indicate that the two proposed algorithms are capable of streaming tensor decomposition with competitive performance with respect to estimation accuracy and runtime on both synthetic and real data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318370PMC
http://dx.doi.org/10.1016/j.patter.2023.100759DOI Listing

Publication Analysis

Top Keywords

tracking online
8
online low-rank
8
low-rank approximations
8
streaming tensors
8
core tensor
8
tensor
5
approximations higher-order
4
higher-order incomplete
4
incomplete streaming
4
tensors paper
4

Similar Publications